Kurs:Mathematische Modellbildung/Themen/Corona-Modellierung/Softwarenutzung/Tabellenkalkulation

Allgemeines

Bearbeiten
  • Arbeitsblatt mit Spalten und Zeilen
  • einfach zu Bedienen
  • viele Funktionen und Verwendungsmöglichkeiten:
Wertetabellen, Diagramme, numerische Verfahren, stochastische Experimente etc.
  • Formeln beginnen mit "="
  • Wert der Zelle A1: "=A1"
  • Bezug auf andere Zellen möglich
z.B.: Multiplikation der Werte der Zellen A1 und A2:
"=A1*A2"
  • relative Bezüge bleiben beim Kopieren oder Verschieben erhalten

verschieden Funktionen

Bearbeiten
  • "=SUMME()": bildet Summe
  • "=MITTELWERT()": bildet Mittelwert
  • "=VARIANZ()": bildet empirische Stichprobenvarianz
  • "=STABW()": bildet Standardabweichung der Stichprobe

Beispiel: Aufgabe Tiere

Bearbeiten

Erstellen von Diagrammen

Bearbeiten
  • Säulen-, Balken-, Kreis-, Linien-, XY-Streudiagramme möglich
  • Datenbereich markieren und über "Einfügen" eine Diagrammart wählen
  • Diagrammtyp, Datenbereiche, Beschriftungen, Legenden, Farben etc. können im Nachhinein angepasst werden

Beispiel: Aufgabe Tiere

Bearbeiten
Aufgabe Tiere Diagramm

weitere wichtige Befehle

Bearbeiten
  • "=ZUFALLSZAHL()*x": erzeugt eine zufällige Zahl aus [0,x[
  • "=ZUFALLSBEREICH(x;y)": erzeugt eine zufällige ganze Zahl aus [x,y]
  • Wenn-Abfragen:
"=WENN(Bedingung; Wert wenn wahr; Wert wenn falsch)"
"=ZÄHLENWENN(Bereich; Bedingung)"
  • Näherungsweise Bestimmung von π
  • Zwei Spalten X und Y (500 Punkte) in denen jeweils Zufallszahlen in [0,1] simuliert werden
  • Überprüfung, ob der simulierte Punkt innerhalb des Kreises liegt
  • Näherungsweise Bestimmung von π durch:
Monte-Carlo-Simulation

Beispiel: Monte-Carlo Simulation

Bearbeiten
  • Verfahren zur numerischen Nullstellenbestimmung einer Funktion
  • Idee: Nullstelle der Tangente in (x_n,f(x_n)) an den Graphen ist neuer Iterationspunkt
  • Iterationsvorschrift:
  • Abbruchbedingung:

Umsetzung in Excel

Bearbeiten
  • Tabelle mit anlegen
  • Überprüfung der Abbruchbedingung:
"=WENN((ABS());"JA";"NEIN")"

Umsetzung in Excel

Bearbeiten
  • Numerisches Näherungsverfahren im Bereich der Optimierung (z.B: Minimierungsproblem)
  • Gradient: Vektor, der in Richtung des steilsten Anstieges zeigt
  • Idee: Wähle Startpunkt. Verschiebe diesen immer wieder stückweise in Richtung des negativen Gradienten, bis der Gradient gleich Null ist → Minimum oder Sattelpunkt

Umsetzung in Excel

Bearbeiten
  • Wähle Startstelle
  • Berechne und
  • Schritt in Richtung:
"=- * Schrittweite / WURZEL( + )"
  • Schritt in Richtung analog
  • neue Schrittweite:
"=WENN(f() > f(); Schrittweite/2; Schrittweite)"

Umsetzung in Excel

Bearbeiten

Seiteninformation

Bearbeiten

Diese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.

Wiki2Reveal

Bearbeiten

Dieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Mathematische Modellbildung' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.