Kurs:Mathematische Modellbildung/Themen/Neuronales Netz/Modellierungszyklus Universität

  • Monitoring für verschiedene Vogelarten durch Wildkameras und durch Algorithmus wird der Vogel bestimmt (teils mit Fuzzylogik)
  • Heatmap / Verbreitungskarte als dreidimensionale Dichtefunktion [1]
  • mehrdimesionales Integral, um Vogeldichte (Volumen) verschiedener Regionen zu beobachten
  • Berücksichtigung verschiedener (einzelnen) Aspekte, die Verbreitung beeinflussen
  • z.B Klimawandel, Einfluss von Naturschutzprogrammen (Verbesserung der Wasserqualitäten, Verdrängen der einheimischen Arten durch eingewanderte Arten)

Mathematische Theorie

Bearbeiten

Dichtefunktion/ dreidimensionale Heatmap

Bearbeiten
  • Häufigkeit und Konzentration der Vogelart in verschiedenen Gebieten visuell erfassen
  • Regionen identifizieren, in denen die Vogelart besonders häufig oder selten anzutreffen ist
  • Wahrscheinlichkeit bestimmen, dass eine bestimmte Anzahl von Vögeln in einem bestimmten Bereich beobachtet wird
  • Vergleiche zwischen Standorten, Zeiträumen etc. ziehen und Trends erkennen
  • Dichtefunktion ermöglicht präzisere Darstellung des Vorkommens einer Vogelart, erlaubt uns, räumliche Verteilung und Wahrscheinlichkeiten in Bezug auf Anzahl der Vögel zu berücksichtigen
  • Dichtefunktion hilft, Einblicke in das Verhalten und die Ökologie der Vogelart zu gewinnen und informierte Entscheidungen im Naturschutz und bei der Lebensraumplanung zu treffen

Integration der Dichtefunktion

Bearbeiten

Die Integration der Dichtefunktion beim Vogelvorkommen ermöglicht uns:

  • die Berechnung der Wahrscheinlichkeit des Vogelvorkommens in bestimmten Gebieten
  • den Vergleich von Wahrscheinlichkeiten zwischen verschiedenen Regionen
  • die Ermittlung des durchschnittlichen Vogelvorkommens
  • die Identifizierung von Ausreißern oder ungewöhnlichen Vorkommnissen

Modellierung

Bearbeiten

Dreidimensionale Heatmap

Bearbeiten
  • Dichtefunktion über Bayern
  • Sei Ω ⊂ R ein Intervall

Eine Funktion f ∶ Ω → R heißt Dichtefunktion (oder Dichte oder Wahrscheinlichkeitsdichte) (auf Ω), falls die folgenden Bedingungen gelten:

  • es gilt f(x)≥0 für alle x∈Ω.
  • f ist (Lebesgue)-integrierbar mit ∫ f(x) dx = 1.


 

Landkreise Bayern

Bearbeiten
 
Dargestellt sind die Landkreise von Bayern mit einem selbstgewähltem Raster
 
Rastereinteilung Unterfranken

Dichtefunktion mit Maxima

Bearbeiten
 
Dichtefunktion der Vogeldichte


 
Plot der Dichtefunktion
 
Höhe der Dichtefunktion

Vereinfachung und Bewertung des Modellierungszyklus

Bearbeiten
  • Mehrdimensionale Dichtefunktion und Integralrechnung verbessern Heatmaps im Vogelmonitoring
  • ermöglichen präzisere Betrachtung von Regionen und Einbeziehung von Umweltfaktoren
  • Fasilogik hilft, wahrscheinliche Ursachen für Veränderungen zu bestimmen.
  • Falsche Daten können die Zuverlässigkeit des Algorithmus beeinträchtigen.

Warum GeoGebra

Bearbeiten
  • Rastereinteilung von geographischen Landkarten
  • Erstellung eines Rasters mit gleichmäßigem Abstand
  • alle Raster haben die gleiche Größe

Warum Maxima

Bearbeiten
  • 3 dimensionale Darstellung
  • Darstellung komplexerer Funktionsgraphen
  • Vereinfachung und Lösung langer Gleichungen
  1. https://niebert.github.io/WikiversityDoc/cas4wiki.html