Lineare Abbildung/Eigenraum/Definition/Erläuterungen/Bemerkung
Wir erlauben also beliebige Werte (nicht nur Eigenwerte) in der Definition der Eigenräume. Wir werden in Fakt sehen, dass es sich dabei um Untervektorräume handelt. Insbesondere gehört die zu jedem Eigenraum, obwohl sie kein Eigenvektor ist. Einen eindimensionalen Eigenraum nennen wir auch Eigengerade. Für die meisten (nämlich alle bis auf endlich viele, wenn der Vektorraum endlichdimensional ist) ist der Eigenraum einfach der Nullraum.