Maßraum/Indikatorfunktionen zu Teilmengen/Unstetigkeit des Integrals/Aufgabe/Lösung

Für jedes ist

Wenn z.B. ein Maßraum ist mit und die Familie durch

gegeben ist, so besitzt die Funktion eine Sprungstelle in und ist daher nicht stetig.

Die Bedingung (1) ist erfüllt. Für festes geht es um die Abbildung

Da nach Voraussetzung messbar ist, ist diese Abbildung messbar.

Die Bedingung (3) ist erfüllt, und zwar mit der konstanten Funktion . Es ist aufgrund der vorausgesetzten Endlichkeit des Maßraumes , und es ist für jede Indikatorfunktion.

Da die Schlussfolgerung des Satzes nicht gilt, kann die Bedingung (2) nicht generell erfüllt sein.