Mathematische Logik/Gemischte Satzabfrage/16/Aufgabe/Lösung
- Es sei eine geordnete Menge mit der Eigenschaft, dass jede total geordnete Teilmenge eine obere Schranke in besitzt. Dann gibt es in maximale Elemente.
- Es sei ein Symbolalphabet, eine Menge an -Ausdrücken und ein weiterer -Ausdruck. Dann gilt genau dann, wenn es eine endliche Teilmenge gibt mit .
- Es sei eine widerspruchsfreie, arithmetische Ausdrucksmenge, die Repräsentierungen erlaube. Die Ableitungsmenge (also die Menge der zugehörigen Gödelnummern) sei schwach repräsentierbar in . Dann gibt es einen arithmetischen Satz derart, dass weder noch seine Negation aus ableitbar ist.