Maximale untere Treppenfunktion/1-t^3/0 bis 1/Zwei Teilungspunkte/Beispiel

Wir wollen für die Funktion

und das Einheitsintervall bestimmen, für welche zwei Unterteilungspunkte das Treppenintegral der zugehörigen (dreistufigen) unteren Treppenfunktion maximal wird. Das Treppenintegral wird durch die Funktion

beschrieben. Die partiellen Ableitungen dieser Funktion sind

und

Wir bestimmen die kritischen Punkte. Aus der ersten partiellen Ableitung ergibt sich die Bedingung

und daraus ergibt sich mit der zweiten partiellen Ableitung die Bedingung

also

bzw.

Somit ist

der einzige kritische Punkt. Wir bestimmen die Hesse-Matrix in diesem Punkt, sie ist

und in gleich

also negativ definit nach Fakt. Daher liegt in ein Maximum nach Fakt vor.