. Da offen ist gibt es ein
mit
.
Aufgrund von (1) gibt es ein
mit
-
und wir können
nehmen.
. Es sei eine gegen konvergente Folge
und ein
gegeben. Für die offene Menge
gibt es nach (2) eine offene Menge
mit
und
.
Wegen der Offenheit von gibt es auch ein
mit
.
Da die Folge gegen konvergiert, gibt es ein
mit
für alle
.
Für diese ist dann
,
d.h. die Bildfolge konvergiert gegen .
. Nehmen wir an, dass nicht der Grenzwert ist. Dann gibt es ein
derart, dass es für alle
ein
gibt mit
und mit
.
Wir wenden diese Eigenschaft auf die Stammbrüche
, ,
an und erhalten eine Folge
-
Die Folge
konvergiert dann gegen
, die Bildfolge
aber nicht gegen
, im Widerspruch zu (3).