Obere Dreiecksgestalt/Konstante Diagonale/Diagonalisierbar/Aufgabe/Lösung
Wenn eine Diagonalmatrix, so ist natürlich auch diagonalisierbar. Es sei nun vorausgesetzt, dass diagonalisierbar ist. Da eine obere Dreiecksmatrix ist, ist der konstante Diagonaleintrag der einzige Eigenwert. Da diagonalisierbar ist, so ist nach Fakt die direkte Summe seiner Eigenräume. In diesem Fall gilt also
d.h. ist die Streckung
mit . Dann ist eine Diagonalmatrix.