Obere Dreiecksmatrix/Eigenwerte/Aufgabe/Lösung


Es sei ein Eigenvektor von zum Eigenwert . Da eine obere Dreiecksmatrix vorliegt, bedeutet dies

Es sei der größte Index mit , was es gibt, da ein Eigenvektor nicht der Nullvektor ist. Dann vereinfacht sich die -te Gleichung

zu

und wegen

folgt

d.h. dass der Eigenwert ein Diagonalelement ist.