Polynomring/Eine Variable/Kommutativer Ring/Grad/Einführung/Textabschnitt


Der Grad eines von verschiedenen Polynoms

mit ist .

Wenn der Leitkoeffizient ist, so nennt man das Polynom normiert. Dem Nullpolynom wird im Allgemeinen kein Grad zugewiesen; manchmal sind gewisse Gleichungen oder Bedingungen aber auch so zu verstehen, dass dem Nullpolynom jeder Grad zugewiesen wird. Polynome vom Grad heißen konstante Polynome, Polynome vom Grad heißen affin-lineare Polynome und Polynome vom Grad heißen quadratische Polynome.



Es sei ein kommutativer Ring und sei der Polynomring über . Dann gelten für den Grad folgende Aussagen.

  1. Wenn ein Integritätsbereich ist, so gilt in (2) die Gleichheit.

Beweis

Siehe Aufgabe.