Polynomring/Primelement bleibt prim/Fakt/Beweis
Beweis
Sei . Wir nehmen an, dass weder noch teilt. Dann teilt nicht alle Koeffizienten von und von . Es sei und und es seien bzw. die kleinsten Indizes derart, dass (bzw. ) kein Vielfaches von ist (für alle kleineren Indizes sind die Koeffizienten also Vielfache von ). Wir betrachten den -ten Koeffizienten von , dieser ist
Die Summanden links sind Vielfache von aufgrund der Wahl von und die Summanden rechts sind ebenso Vielfache von . Da auch der Gesamtkoeffizient nach Voraussetzung ein Vielfaches von ist, muss auch der mittlere Summand ein Vielfaches von sein. Da prim ist, ist dies ein Widerspruch.