Reelle Folge/Konvergiert/Häufungspunkt und beschränkt/Aufgabe/Lösung


Es sei zunächst die Folge konvergent mit Grenzwert . Dann ist die Folge nach Fakt beschränkt. Der Grenzwert ist insbesondere ein Häufungspunkt. Nehmen wir an, es würde noch einen weiteren Häufungspunkt geben. Für liegen dann aber alle bis auf endlich viele Folgenglieder innerhalb der -Umgebung (also ) von , und daher kann es innerhalb der -Umgebung von nur endlich viele Glieder geben.

Es sei nun die Folge beschränkt mit dem einzigen Häufungspunkt . Wir behaupten, dass die Folge gegen konvergiert und nehmen an, dass sie nicht gegen konvergiert. Dann gibt es ein derart, dass es außerhalb der -Umgebung von unendlich viele Folgenglieder gibt. Dies bedeutet, dass es eine Teilfolge gibt, die ganz außerhalb von verläuft. Mit der Folge ist auch diese Teilfolge beschränkt. Daher gibt es nach dem Satz von Bolzano-Weierstraß (eine konvergente Teilfolge und)

einen Häufungspunkt der Folge , der auch ein Häufungspunkt von ist. Dabei ist , da es in der -Umgebung von überhaupt keine Folgenglieder der Teilfolge gibt.