Reguläre Punkte/(1,0)/Totales Differential der Umkehrabbildung/(x,y) nach (x^2y,x-sin y)/Aufgabe/Kommentar

Die Abbildung ist auf ganz definiert und überall partiell differenzierbar. Nach Fakt ist folglich total differenzierbar. Die regulären Punkte sind genau diejenigen, in denen das totale Differential vollen Rang besitzt, also . Als lineare Abbildung wird das totale Differential durch die Jacobi-Matrix beschrieben. In unserem Fall ist die zugehörige Jacobi-Matrix quadratisch, sodass wir mittels der Determinante überprüfen können, ob das totale Differential maximalen Rang besitzt. Entsprechend ist genau dann ein regulärer Punkt, wenn

gilt. Für welche Punkte gilt dies, wenn man das berechnet?

Für die regulären Punkte gilt nun nach dem Satz über die lokale Umkehrbarkeit, dass in einer (möglicherweise sehr kleinen) Umgebung von eine Umkehrabbildung existiert, die sogar stetig differenzierbar ist. Ist dies ein Diffeomorphismus? Im Allgemeinen existiert eine solche Umkehrabbildung nicht global, sondern nur lokal in einer Umgebung von . Für kann man das auch direkt nachvollziehen, weil nicht injektiv ist (der Punkt hat beispielsweise viele Urbilder).

In der Regel ist es schwierig, diese Umkehrabbildung explizit zu berechnen, aber wir können zumindest das totale Differential der lokalen Umkehrabbildung (die wir mit bezeichnen) angeben. Für die Hintereinanderschaltung wissen wir, dass dies die Identitätsabbildung in einer Umgebung von ist. Durch Verwenden der der Kettenregel können wir daher folgern, dass

die Identitätsmatrix sein muss. Die Jacobi-Matrizen sind also invers zueinander. Für lässt sich das totale Differential der Umkehrabbildung somit über die Inverse der Jacobi-Matrix von berechnen.

Falls kein regulärer Punkt ist, so wird dies als kritischer Punkt bezeichnet. In diesem Fall macht der Satz über die lokale Umkehrbarkeit keine Aussage darüber, ob die Abbildung in diesem kritischen Punkt lokal invertierbar ist. Tatsächlich können beide Fälle auftreten, was man dann durch spezifische Überlegungen entscheiden muss.
Zur kommentierten Aufgabe