Restklassenbildung/Kommutativer Ring/Ideal/Textabschnitt
- Restklassenbildung
Restklassenbildung ist ein fundamentaler Prozess in der Algebra, an den wir kurz erinnern. Wir gehen davon aus, dass dies für Untergruppen (Normalteiler) bzw. für Untervektorräume bekannt ist.
Es sei
Wegen . ist . Es seien . Das bedeutet und . Dann ist
und daher .
Es sei nun und beliebig. Dann ist
also ist .
Man kann umgekehrt zu jedem Ideal einen Ring konstruieren, und zwar zusammen mit einer surjektiven Abbildung
deren Kern gerade das vorgegebene Ideal ist.
Es sei ein kommutativer Ring und ein Ideal in . Zu heißt die Teilmenge
die Nebenklasse von zum Ideal . Jede Teilmenge von dieser Form heißt Nebenklasse zu .
Zwei Elemente definieren genau dann die gleiche Nebenklasse, also , wenn ihre Differenz zum Ideal gehört. Man sagt dann auch, dass und dieselbe Nebenklasse repräsentieren.
Es sei ein kommutativer Ring und ein Ideal in . Dann ist der Restklassenring (sprich „R modulo I“) ein kommutativer Ring, der durch folgende Daten festgelegt ist.
- Als Menge ist die Menge der Nebenklassen zu .
- Durch
wird eine Addition von Nebenklassen definiert.
- Durch
wird eine Multiplikation von Nebenklassen definiert.
- definiert das neutrale Element für die Addition (die Nullklasse).
- definiert das neutrale Element für die Multiplikation (die Einsklasse).
Man muss dabei zeigen, dass diese Abbildungen (also Addition und Multiplikation) wohldefiniert sind, d.h. unabhängig vom Repräsentanten, und dass die Ringaxiome erfüllt sind.
Darüber hinaus ist die Abbildung
ein Ringhomomorphismus, die sogenannte Restklassenabbildung. Das Bild von in wird häufig mit , oder einfach mit selbst bezeichnet und heißt die Restklasse von . Bei dieser Abbildung gehen genau die Elemente aus dem Ideal auf null, d.h. der Kern dieser Restklassenabbildung ist das vorgegebene Ideal.
Das einfachste Beispiel für diesen Prozess ist die Abbildung, die einer ganzen Zahl den Rest bei Division durch eine fixierte Zahl zuordnet. Jeder Rest wird dann repräsentiert durch eine der Zahlen . Im Allgemeinen gibt es nicht ein so übersichtliches Repräsentantensystem.
Ein typisches Beispiel, wie man mit Restklassen etwas beweist und wie man Eigenschaften von Elementen (oder anderen Objekten) in Eigenschaften von Restklassen übersetzt, liefert der folgende Satz (wir unterscheiden in der Notation nicht zwischen Klasse und Repräsentant; es sei zur Übung empfohlen, eine unterscheidende Notation einzufügen).
- Die Homomorphiesätze für Ringe
Es seien und kommutative Ringe, es sei ein Ringhomomorphismus und ein surjektiver Ringhomomorphismus. Es sei vorausgesetzt, dass
ist.
Dann gibt es einen eindeutig bestimmten Ringhomomorphismus
derart, dass ist.
Mit anderen Worten: das Diagramm
ist kommutativ.
Aufgrund von Fakt gibt es einen eindeutig bestimmten Gruppenhomomorphismus
der die Eigenschaften erfüllt. Es ist also lediglich noch zu zeigen, dass auch die Multiplikation respektiert. Es seien dazu , und diese seien repräsentiert durch bzw. aus . Dann wird durch repräsentiert und daher ist
Ferner ist
Die im vorstehenden Satz konstruierte Abbildung heißt wieder induzierte Abbildung oder induzierter Homomorphismus und entsprechend heißt der Satz auch Satz vom induzierten Homomorphismus.
Es seien und kommutative Ringe und sei
Dann gibt es eine kanonische Isomorphie von Ringen
Es seien und kommutative Ringe und sei
Dann gibt es eine kanonische Faktorisierung
wobei die kanonische Projektion, ein Ringisomorphismus und die kanonische Inklusion des Bildes ist.
Es gilt also wieder:
- Bild Urbild modulo Kern.