Teilbarkeit/N/Exponenten/Produktordnung/Aufgabe

Es sei die Menge der Primzahlen und die Menge aller Abbildungen von nach . Wir betrachten die Abbildung

die jeder natürlichen Zahl das Exponententupel zuordnet. Man betrachtet also die eindeutige Primfaktorzerlegung

wobei sich das Produkt über alle Primzahlen erstreckt und wobei nur endlich viele Exponenten ungleich sind.

  1. Zeige, dass injektiv ist.
  2. Bestimme das Bild von .
  3. Es sei mit der Teilbarkeitsrelation und mit der Produktordnung versehen. Zeige, dass eine ordnungsvolltreue Abbildung ist.