Treppenfunktionen/Ober und Unterintegral/Textabschnitt
Diese Definition stellt also keine Bedingung an den Wert der Funktion an den Unterteilungspunkten. Das Intervall nennt man -tes Teilintervall, und heißt Länge dieses Teilintervalls. Wenn die Länge der Teilintervalle konstant ist, so spricht man von einer äquidistanten Unterteilung.
Es sei ein reelles Intervall mit den Grenzen und sei
eine Treppenfunktion zur Unterteilung und den Werten , . Dann heißt
das Treppenintegral von auf .
Das Treppenintegral wird auch mit bezeichnet. Bei einer äquidistanten Unterteilung mit der Teilintervalllänge ist das Treppenintegral gleich . Das Treppenintegral ist nicht von der gewählten Unterteilung abhängig, bezüglich der eine Treppenfunktion vorliegt (man kann also die Unterteilung verfeinern).
Es sei ein beschränktes Intervall und sei
eine Funktion. Dann heißt eine Treppenfunktion
eine obere Treppenfunktion zu , wenn für alle ist. Eine Treppenfunktion
heißt eine untere Treppenfunktion zu , wenn für alle ist.
Eine obere (untere) Treppenfunktion zu gibt es genau dann, wenn nach oben (nach unten) beschränkt ist.
Es sei ein beschränktes Intervall und sei
eine Funktion. Zu jeder oberen Treppenfunktion
von zur Unterteilung , , und den Werten , , heißt das Treppenintegral
ein oberes Treppenintegral (oder eine Obersumme) von auf .
Es sei ein beschränktes Intervall und sei
eine Funktion. Zu jeder unteren Treppenfunktion
von zur Unterteilung , , und den Werten , , heißt
ein unteres Treppenintegral (oder eine Untersumme) von auf .
Verschiedene obere (untere) Treppenfunktionen liefern natürlich verschiedene obere (und untere) Treppenintegralge.
Es sei ein beschränktes Intervall und sei
eine nach oben beschränkte Funktion. Dann heißt das Infimum von sämtlichen Treppenintegralen zu oberen Treppenfunktionen von das Oberintegral von .
Es sei ein beschränktes Intervall und sei
eine nach unten beschränkte Funktion. Dann heißt das Supremum von sämtlichen Treppenintegralen zu unteren Treppenfunktionen von das Unterintegral von .
Die Beschränkung nach unten stellt sicher, dass es überhaupt eine untere Treppenfunktion gibt und damit die Menge der unteren Treppenintegrale nicht leer ist. Unter dieser Bedingung allein muss nicht unbedingt die Menge der unteren Treppenintegrale ein Supremum besitzen. Für (beidseitig) beschränkte Funktionen existiert hingegen stets das Ober- und das Unterintegral. Bei einer gegebenen Unterteilung gibt es eine kleinste obere (größte untere) Treppenfunktion, die durch die Suprema (Infima) der Funktion auf den Teilintervallen festgelegt ist. Bei stetigen Funktionen auf abgeschlossenen Intervallen sind das Maxima bzw. Minima. Für das Integral muss man aber Treppenfunktionen zu sämtlichen Unterteilungen berücksichtigen.