Lösung der gewöhnlichen Differentialgleichung
Es sei ein
endlichdimensionaler
reeller Vektorraum,
ein
reelles Intervall,
eine
offene Menge
und
-
ein
Vektorfeld
auf . Zur
gewöhnlichen Differentialgleichung
-
heißt eine
Abbildung
-
auf einem
offenen (Teil)Intervall
eine Lösung der Differentialgleichung, wenn folgende Eigenschaften erfüllt sind.
- Es ist
für alle
.
- Die Abbildung ist
differenzierbar.
- Es ist
für alle
.