Vektorfeld/R/Zugehörige Derivation/Eulerregel/Invariante Funktion/Aufgabe

Es sei ein endlichdimensionaler reeller Vektorraum und

ein stetig differenzierbares Vektorfeld. Es sei die Menge der unendlich oft stetig differenzierbaren Funktionen von nach . Wir betrachten die Abbildung

mit

Man erhält also aus der Funktion die neue Funktion , indem man an einem Punkt die Richtungsableitung der Funktion in Richtung berechnet.

  1. Zeige

    für .

  2. Es sei mit . Zeige, dass auf allen (Bildern der) Lösungen zur Differentialgleichung konstant ist.