Zufallsvariable
Einführung
BearbeitenIn der Stochastik ist eine Zufallsvariable oder Zufallsgröße (auch zufällige Größe,[1] Zufallsveränderliche, selten stochastische Variable oder stochastische Größe) eine Größe, deren Wert vom Zufall abhängig ist.[2] Formal ist eine Zufallsvariable eine Zuordnungsvorschrift, die jedem möglichen Ergebnis eines Zufallsexperiments eine Größe zuordnet.[1]
Zufallszahle
BearbeitenIst diese Größe eine Zahl, so spricht man von einer Zufallszahl. Beispiele für Zufallszahlen sind die Augensumme von zwei geworfenen Würfeln und die Gewinnhöhe in einem Glücksspiel. Zufallsvariablen können aber auch komplexere mathematische Objekte sein, wie Zufallsbewegungen, Zufallspermutationen oder Zufallsgraphen.
Mehrere Zufallsvariablen für ein Experiment
BearbeitenÜber verschiedene Zuordnungsvorschriften können einem Zufallsexperiment auch verschiedene Zufallsvariablen zugeordnet werden.[1] Den einzelnen Wert, den eine Zufallsvariable bei der Durchführung eines Zufallsexperiments annimmt, nennt man Realisierung[3] oder im Falle eines stochastischen Prozesses einen Pfad.
Entstehung des Begriffs
BearbeitenWährend früher der von A. N. Kolmogorow eingeführte Begriff zufällige Größe der übliche deutsche Begriff war, hat sich heute (ausgehend vom englischen random variable) der etwas irreführende Begriff Zufallsvariable durchgesetzt.[4]
Motivation des formalen Begriffs
BearbeitenDie Funktionswerte einer Zufallsvariablen sind abhängig von einer den Zufall repräsentierenden Größe . Zum Beispiel kann das zufällige Ergebnis eines Münzwurfs sein. Dann kann zum Beispiel eine Wette auf den Ausgang eines Münzwurfs mithilfe einer Zufallsvariablen modelliert werden. Angenommen, es wurde auf Zahl gewettet, und wenn richtig gewettet wurde, wird 1 EUR ausgezahlt, sonst nichts.
Definition einer Zufallsvariablen
BearbeitenSei die Auszahlungssumme bei einem zweimaligen Münzwurf. Da der Wert von vom Zufall abhängt, ist eine Zufallsvariable, insbesondere eine reelle Zufallsvariable.
Einmaliger Münzwurf - Ergebnisraum
BearbeitenSie bildet die Menge der Wurfergebnisse von einem Münzwurf die Ergebnismenge , während das zusammengesetzte Experiment des zweimaligen Münzwurfes die Ergebnismenge ist.
Zusammengesetztes Ergebnis - zweimaliger Münzwurf
BearbeitenDie Menge der möglichen Auszahlungsbeträge im zusammengesetzten Experiment is :
Ergebnisraum des Zufallsexperimentes
Bearbeitennennt als Menge aller Ergebnisse eine Zufallsexperimentes Ergebnisraum. Besteht das Wettet man bei zwei Münzwürfen beide Male auf Kopf und bezeichnet die Kombination der Ausgänge der Münzwürfe mit , so lassen sich beispielsweise folgende Zufallsvariablen untersuchen:
- als Auszahlung nach der ersten Wette,
- als Auszahlung nach der zweiten Wette,
- als Summe der beiden Auszahlungen.
Bezeichnungen
BearbeitenZufallsvariablen selbst werden üblicherweise mit einem Großbuchstaben bezeichnet (hier ), während man für die Realisierungen die entsprechenden Kleinbuchstaben verwendet (so beispielsweise für die Realisierungen , , ).
Bedeutung des Ergebnisraumes
BearbeitenIm Beispiel sind die Mengen und eine konkrete Interpretation. In der weiteren Entwicklung der Wahrscheinlichkeitstheorie ist es oft zweckmäßig, die Elemente von als Repräsentanten des Zufalls zu betrachten und die Verteilungsannahmen für die induzierte Verteilung z.B. auf die reellen Zahlen zu ohne ihnen eine konkrete Bedeutung zuzuweisen, und dann sämtliche zu modellierende Zufallsvorgänge als Zufallsvariable zu erfassen.
Definition - Zufallsvariable
BearbeitenAls Zufallsvariable bezeichnet man eine messbare Funktion von einem Wahrscheinlichkeitsraum in einen Messraum.
Eine formale mathematische Definition lässt sich wie folgt geben:[5]
- Es seien ein Wahrscheinlichkeitsraum und ein Messraum. Eine -messbare Funktion heißt dann eine -Zufallsvariable auf .
Beispiel: Zweimaliger Würfelwurf
BearbeitenSumme von zwei Würfeln: .
Experiment mit 2 fairen Würfeln - Laplaceverteilung
BearbeitenDas Experiment, mit einem fairen Würfel zweimal zu würfeln, lässt sich mit folgendem Wahrscheinlichkeitsraum modellieren:
- ist die Menge der 36 möglichen Ergebnisse
- ist die Potenzmenge von
- Will man zwei unabhängige Würfe mit einem fairen Würfel modellieren, so setzt man alle 36 Ergebnisse gleich wahrscheinlich, wählt also das Wahrscheinlichkeitsmaß als für .
Definition von Zufallsgrößen
BearbeitenDie Zufallsvariablen (gewürfelte Zahl des ersten Würfels), (gewürfelte Zahl des zweiten Würfels) und (Augensumme des ersten und zweiten Würfels) werden als folgende Funktionen definiert:
- und
wobei für die borelsche σ-Algebra auf den reellen Zahlen gewählt wird.
Bemerkung - Angabe des Messräume
BearbeitenOft wird auf die konkrete Angabe der zugehörigen Räume verzichtet; es wird angenommen, dass aus dem Kontext klar ist, welcher Wahrscheinlichkeitsraum auf und welcher -Algebra auf gemeint ist. Im Zweifel sollte man den zugehörigen Messraum angeben.
Bemerkung - Sigma-Algebra bei endlicher Ergebnismenge
BearbeitenBei einer endlichen Ergebnismenge wird meistens als die Potenzmenge von gewählt. Die Forderung, dass die verwendete Funktion messbar ist, ist dann immer erfüllt.
Bemerkung - Sigma-Algebra bei überabzählbarer Ergebnismenge
BearbeitenMessbarkeit wird erst wirklich bedeutsam, wenn die Ergebnismenge überabzählbar viele Elemente enthält. Dies ist bei Maßen auf den reellen Zahlen der Fall.
Klassen von Zufallsvariablen
BearbeitenEinige Klassen von Zufallsvariablen mit bestimmten Wahrscheinlichkeits- und Messräumen werden besonders häufig verwendet (z.B. die Borelsche_σ-Algebra auf den reellen Zahlen). Diese werden teilweise mit Hilfe alternativer Definitionen eingeführt, die keine Kenntnisse der Maßtheorie voraussetzen:
Reelle Zufallsvariable
BearbeitenBei reellen Zufallsvariablen ist der Bildraum die Menge der reellen Zahlen versehen mit der borelschen -Algebra. Die allgemeine Definition von Zufallsvariablen lässt sich in diesem Fall zur folgenden Definition vereinfachen:
Definition - reelle Zufallsvariable
BearbeitenEine reelle Zufallsvariable ist eine Funktion , die jedem Ergebnis aus einer Ergebnismenge eine reelle Zahl zuordnet und die folgende Messbarkeitsbedingung erfüllt:
Bemerkung zur Definition
BearbeitenDie Definition bedeutet, dass die Menge aller Ergebnisse, deren Realisierung unterhalb eines bestimmten Wertes liegt, ein Ereignis bilden muss.
Bezug zum Beispiel Würfelwurf
BearbeitenIm Beispiel des zweimaligen Würfelns sind , und jeweils reelle Zufallsvariablen.
Mehrdimensionale Zufallsvariable
BearbeitenEine mehrdimensionale Zufallsvariable ist eine messbare Abbildung für eine Dimension . Sie wird auch als Zufallsvektor bezeichnet. Damit ist gleichzeitig ein Vektor von einzelnen reellen Zufallsvariablen , die alle auf dem gleichen Wahrscheinlichkeitsraum definiert sind.
Multivariate Verteilung
BearbeitenDie Verteilung von wird als multivariat bezeichnet, die Verteilungen der Komponenten nennt man auch Randverteilungen. Die mehrdimensionalen Entsprechungen von Erwartungswert und Varianz sind der Erwartungswertvektor und die Kovarianzmatrix.
Beispiel diskrete multivariate Verteilung
BearbeitenIm diskreten Fall kann als Beispiel der zweimalige Würfelwurf mit als eine zweidimensionale Zufallsvariable angesehen werden.
Beispiel stetige multivariate Verteilung
BearbeitenIm stetigen Fall kann als Beispiel des Dartwurf auf ein rechteckiges Brett mit einem Koordinatensystem angesehen werden. Dabei steht omega für einen Wurf , die die Einstichstelle des Wurfel als zweidimensionale Zufallsvariable auf dem Brett angibt.
Unterschied - Zufallsvektoren - Wahrscheinlichkeitsvektoren
BearbeitenZufallsvektoren sollten nicht mit Wahrscheinlichkeitsvektoren (auch stochastische Vektoren genannt) verwechselt werden. Diese sind Elemente des , deren Komponenten positiv sind und deren Summe 1 ergibt. Sie beschreiben die Wahrscheinlichkeitsmaße auf Mengen mit Elementen.
Komplexe Zufallsvariable
BearbeitenBei komplexen Zufallsvariablen ist der Bildraum die Menge der komplexen Zahlen versehen mit der durch die kanonische Vektorraumisomorphie zwischen und „geerbten“ borelschen σ-Algebra. ist genau dann eine Zufallsvariable, wenn Realteil und Imaginärteil jeweils reelle Zufallsvariablen sind.
Numerische oder erweiterte Zufallsvariable
BearbeitenDer Begriff Zufallsvariable ohne weitere Charakterisierung bedeutet meistens – und fast immer in anwendungsnahen Darstellungen – reelle Zufallsvariable. Zur Unterscheidung von einer solchen wird eine Zufallsvariable mit Werten in den erweiterten reellen Zahlen als numerische Zufallsvariable[6] – entsprechend der Terminologie der numerischen Funktion – oder als erweiterte Zufallsvariable[6] (engl. extended random variable[7]) bezeichnet. Es gibt aber auch eine abweichende Terminologie, bei der Zufallsvariable eine numerische Zufallsvariable bezeichnet und eine reelle Zufallsvariable immer als solche bezeichnet wird.[8]
Die Verteilung von Zufallsvariablen, Existenz
BearbeitenEng verknüpft mit dem eher technischen Begriff einer Zufallsvariablen ist der Begriff der auf dem Bildraum von induzierten Wahrscheinlichkeitsverteilung. Mitunter werden beide Begriffe auch synonym verwendet.
Induzierte Verteilung - Bildmaß
BearbeitenFormal wird die Verteilung einer Zufallsvariablen als das Bildmaß des Wahrscheinlichkeitsmaßes definiert, also
- für alle , wobei die auf dem Bildraum der Zufallsvariable gegebene σ-Algebra ist.
Alternative Notation in der Literatur
BearbeitenStatt werden in der Literatur für die Verteilung von auch die Schreibweisen oder verwendet.
Beispiel - Induzierte Verteilung
BearbeitenSpricht man also beispielsweise von einer normalverteilten Zufallsvariablen, so ist damit eine Zufallsvariable mit Werten in den reellen Zahlen gemeint, deren Verteilung einer Normalverteilung entspricht.
Eigenschaften von induzierten Veteilungen
BearbeitenEigenschaften, welche sich allein über gemeinsame Verteilungen von Zufallsvariablen ausdrücken lassen, werden auch wahrscheinlichkeitstheoretisch genannt.[9] Für Behandlung solcher Eigenschaften ist es nicht notwendig, die konkrete Gestalt des (Hintergrund-)Wahrscheinlichkeitsraumes zu kennen, auf dem die Zufallsvariablen definiert sind.
Bedeutung der Verteilung auf Omega
BearbeitenHäufig wird deswegen z.B. von einer reellen Zufallsvariablen lediglich die Verteilungsfunktion angegeben und der zu Grunde liegende Wahrscheinlichkeitsraum offen gelassen.
Existenz einer Verteilung auf Omega 1
BearbeitenObwohl man in der Regel nur mit der induzierten Verteilung arbeitet, ist dennoch notwendig zu klären, dass zumindest ein , das die durch Zufallsvariablen induzierte Verteilung generieren kann.
Existenz einer Verteilung auf Omega 2
BearbeitenEin solcher Wahrscheinlichkeitsraum lässt sich aber zu einer konkreten Verteilung leicht angeben, indem beispielsweise , als die Borelsche σ-Algebra auf den reellen Zahlen und als das durch die Verteilungsfunktion induzierte Lebesgue-Stieltjes-Maß gewählt wird. Als Zufallsvariable kann dann z.B. die identische Abbildung mit gewählt werden.[10]
Familien von Zufallsvariablen
BearbeitenWenn eine Familie von Zufallsvariablen betrachtet wird, reicht es aus wahrscheinlichkeitstheoretischer Perspektive genauso, die gemeinsame Verteilung der Zufallsvariablen anzugeben, die Gestalt des Wahrscheinlichkeitsraums kann wiederum offen gelassen werden.
Zugehörigkeit zu einer Familien von Zufallsvariablen
BearbeitenDie Frage nach der konkreten Gestalt des Wahrscheinlichkeitsraumes tritt also in den Hintergrund, es ist jedoch von Interesse, ob zu einer Familie von Zufallsvariablen mit vorgegebenen endlichdimensionalen gemeinsamen Verteilungen ein Wahrscheinlichkeitsraum existiert, auf dem sie sich gemeinsam definieren lassen. Diese Frage wird für unabhängige Zufallsvariablen durch einen Existenzsatz von É. Borel gelöst, der besagt, dass man im Prinzip auf den von Einheitsintervall und Lebesgue-Maß gebildeten Wahrscheinlichkeitsraum zurückgreifen kann.
Beweisidee von Borel
BearbeitenEin möglicher Beweis nutzt, dass sich die binären Nachkommastellen der reellen Zahlen in [0,1] als ineinander verschachtelte Bernoulli-Folgen betrachten lassen (ähnlich Hilberts Hotel).[11]
Mathematische Attribute für Zufallsvariablen
BearbeitenVerschiedene mathematische Attribute, die in der Regel denen für allgemeine Funktionen entlehnt sind, finden bei Zufallsvariablen Anwendung. Die häufigsten werden in der folgenden Zusammenstellung kurz erklärt:
Diskret
BearbeitenEine Zufallsvariable wird als diskret bezeichnet, wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt oder etwas allgemeiner, wenn ihre Verteilung eine diskrete Wahrscheinlichkeitsverteilung ist.[12] Im obigen Beispiel des zweimaligen Würfelns sind alle drei Zufallsvariablen , und diskret. Ein weiteres Beispiel für diskrete Zufallsvariablen sind zufällige Permutationen.
Konstant
BearbeitenEine Zufallsvariable wird als konstant bezeichnet, wenn sie nur einen Wert annimmt: für alle . Sie ist ein Spezialfall einer diskreten Zufallsvariable.
Es gilt
die Umkehrung gilt im Allgemeinen nicht. Eine Zufallsvariable die nur die rechte Seite erfüllt, heißt fast sicher konstant.
Unabhängig
BearbeitenZwei reelle Zufallsvariablen heißen unabhängig, wenn für je zwei Intervalle und die Ereignisse und stochastisch unabhängig sind. Das sind sie, wenn gilt: .
In obigem Beispiel sind und unabhängig voneinander; die Zufallsvariablen und hingegen nicht.
Unabhängigkeit mehrerer Zufallsvariablen bedeutet, dass das Wahrscheinlichkeitsmaß des Zufallsvektors dem Produktmaß der Wahrscheinlichkeitsmaße der Komponenten, also dem Produktmaß von entspricht.[13] So lässt sich beispielsweise dreimaliges unabhängiges Würfeln durch den Wahrscheinlichkeitsraum mit
- ,
- der Potenzmenge von und
modellieren; die Zufallsvariable "Ergebnis des -ten Wurfes" ist dann
- für .
Die Konstruktion eines entsprechenden Wahrscheinlichkeitsraums für eine beliebige Familie unabhängiger Zufallsvariable mit gegebenen Verteilungen ist ebenfalls möglich.[14]
Identisch verteilt
BearbeitenZwei oder mehr Zufallsvariablen heißen identisch verteilt (bzw. i.d. für identically distributed), wenn ihre induzierten Wahrscheinlichkeitsverteilungen gleich sind. In Beispiel des zweimaligen Würfelns sind , identisch verteilt; die Zufallsvariablen und hingegen nicht.
Unabhängig und identisch verteilt
BearbeitenHäufig werden Folgen von Zufallsvariablen untersucht, die sowohl unabhängig als auch identisch verteilt sind; demnach spricht man von unabhängig identisch verteilten Zufallsvariablen, üblicherweise mit u.i.v. bzw. i.i.d. (für independent and identically distributed) abgekürzt.
In obigem Beispiel des dreimaligen Würfelns sind , und i.i.d. Die Summe der ersten beiden Würfe und die Summe des zweiten und dritten Wurfs sind zwar identisch verteilt, aber nicht unabhängig. Dagegen sind und unabhängig, aber nicht identisch verteilt.
Austauschbar
BearbeitenAustauschbare Familien von Zufallsvariablen sind Familien, deren Verteilung sich nicht ändert, wenn man endlich viele Zufallsvariablen in der Familie vertauscht. Austauschbare Familien sind stets identisch verteilt, aber nicht notwendigerweise unabhängig.
Mathematische Attribute für reelle Zufallsvariablen
BearbeitenKenngrößen
BearbeitenZur Charakterisierung von Zufallsvariablen dienen einige wenige Funktionen, die wesentliche mathematische Eigenschaften der jeweiligen Zufallsvariable beschreiben. Die wichtigste dieser Funktionen ist die Verteilungsfunktion, die Auskunft darüber gibt, mit welcher Wahrscheinlichkeit die Zufallsvariable einen Wert bis zu einer vorgegebenen Schranke annimmt, beispielsweise die Wahrscheinlichkeit, höchstens eine Vier zu würfeln. Bei stetigen Zufallsvariablen wird diese durch die Wahrscheinlichkeitsdichte ergänzt, mit der die Wahrscheinlichkeit berechnet werden kann, dass die Werte einer Zufallsvariablen innerhalb eines bestimmten Intervalls liegen. Des Weiteren sind Kennzahlen wie der Erwartungswert, die Varianz oder höhere mathematische Momente von Interesse.
Stetig oder kontinuierlich
BearbeitenDas Attribut stetig wird für unterschiedliche Eigenschaften verwendet.
- Eine reelle Zufallsvariable wird als stetig (oder auch absolut stetig) bezeichnet, wenn sie eine Dichte besitzt (ihre Verteilung absolutstetig bezüglich des Lebesgue-Maßes ist).[15]
- Eine reelle Zufallsvariable wird als stetig bezeichnet, wenn sie eine stetige Verteilungsfunktion besitzt.[16] Insbesondere bedeutet das, dass für alle gilt.
Messbarkeit, Verteilungsfunktion und Erwartungswert
BearbeitenWenn eine reelle Zufallsvariable auf dem Ergebnisraum und eine messbare Funktion gegeben ist, dann ist auch eine Zufallsvariable auf demselben Ergebnisraum, da die Verknüpfung messbarer Funktionen wieder messbar ist. wird auch als Transformation der Zufallsvariablen unter bezeichnet. Die gleiche Methode, mit der man von einem Wahrscheinlichkeitsraum nach gelangt, kann benutzt werden, um die Verteilung von zu erhalten.
Die Verteilungsfunktion von lautet
- .
Der Erwartungswert einer quasi-integrierbaren Zufallsgröße von nach berechnet sich folgend:
- .
Integrierbar und quasi-integrierbar
BearbeitenEine Zufallsvariable heißt integrierbar, wenn der Erwartungswert der Zufallsvariable existiert und endlich ist. Die Zufallsvariable heißt quasi-integrierbar, wenn der Erwartungswert existiert, möglicherweise aber unendlich ist. Jede integrierbare Zufallsvariable ist folglich auch quasi-integrierbar.
Beispiel
BearbeitenEs sei eine reelle stetig verteilte Zufallsvariable und .
Dann ist
Fallunterscheidung nach :
Standardisierung
BearbeitenEine Zufallsvariable nennt man standardisiert, wenn ihr Erwartungswert 0 und ihre Varianz 1 ist. Die Transformation einer Zufallsvariable in eine standardisierte Zufallsvariable
bezeichnet man als Standardisierung der Zufallsvariable .
Sonstiges
Bearbeiten- Zeitlich zusammenhängende Zufallsvariablen können auch als stochastischer Prozess aufgefasst werden
- Eine Folge von Realisierungen einer Zufallsvariable nennt man auch Zufallssequenz
- Eine Zufallsvariable erzeugt eine σ-Algebra , wobei die Borelsche σ-Algebra des ist.
Literatur
Bearbeiten- Karl Hinderer: Grundbegriffe der Wahrscheinlichkeitstheorie. Springer, Berlin/ Heidelberg/ New York 1980, ISBN 3-540-07309-4.
- Erich Härtter: Wahrscheinlichkeitsrechnung für Wirtschafts- und Naturwissenschaftler. Vandenhoeck & Ruprecht, Göttingen 1974, ISBN 3-525-03114-9.
- Michel Loève: Probability Theory I. 4. Auflage. Springer, 1977, ISBN 0-387-90210-4.
Weblinks
BearbeitenEinzelnachweise
Bearbeiten- ↑ a b c Jörg Bewersdorff: Glück, Logik und Bluff. Mathematik im Spiel - Methoden, Ergebnisse und Grenzen. 6. Auflage. Springer Spektrum, Wiesbaden 2012, ISBN 978-3-8348-1923-9, S. 39, doi:10.1007/978-3-8348-2319-9 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Norbert Henze: Stochastik für Einsteiger: Eine Einführung in die faszinierende Welt des Zufalls. Vieweg+Teubner Verlag, 2010, ISBN 978-3-8348-0815-8, doi:10.1007/978-3-8348-9351-2, S. 12.
- ↑ David Meintrup, Stefan Schäffler: Stochastik. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, ISBN 3-540-21676-6, S. 456–457, doi:10.1007/b137972.
- ↑ Jeff Miller: Earliest Known Uses of Some of the Words of Mathematics. Abschnitt R.
- ↑ Karl Hinderer: Grundbegriffe der Wahrscheinlichkeitstheorie. Springer, Berlin 1980, ISBN 3-540-07309-4 (nicht überprüft)
- ↑ a b Guido Walz (Hrsg.): Lexikon der Mathematik. Band 4 (Moo bis Sch). Springer Spektrum, Berlin 2017, ISBN 978-3-662-53499-1, S. 98.
- ↑ Galen R. Shorack: Probability for Statisticians (= Springer Texts in Statistics). 2. Auflage. Springer, Cham 2017, ISBN 978-3-319-52206-7, S. 35, doi:10.1007/978-3-319-52207-4.
- ↑ Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2.,durchgesehene Auflage. Springer, Berlin / Heidelberg 2011, ISBN 978-3-642-21025-9, S. 194.
- ↑ Loève: Probability Theory. 4. Auflage. Band 1, Springer 1977, ISBN 0-387-90210-4, S. 172f.
- ↑ Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972, ISBN 0-12-065201-3, Definition 5.6.2.
- ↑ Olav Kallenberg: Foundations of Modern Probability. 2. Ausgabe. Springer, New York 2002, ISBN 0-387-95313-2, S. 55.
- ↑ David Meintrup, Stefan Schäffler: Stochastik. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, ISBN 3-540-21676-6, S. 90, doi:10.1007/b137972.
- ↑ Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972, ISBN 0-12-065201-3 (Definition 5.8.1)
- ↑ Klaus D. Schmidt: Maß und Wahrscheinlichkeit. Springer-Verlag, Berlin/ Heidelberg 2009, ISBN 978-3-540-89729-3, Kapitel 11.4.
- ↑ Marek Fisz: Wahrscheinlichkeitsrechnung und mathematische Statistik. 11. Auflage. VEB Deutscher Verlag der Wissenschaften, Berlin 1989, Definition 2.3.3.
- ↑ Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972, ISBN 0-12-065201-3, S. 210.
Siehe auch
BearbeitenSeiteninformation
BearbeitenDiese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.
Wiki2Reveal
BearbeitenDieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Stochastik' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.
- Die Seite wurde als Dokumententyp PanDocElectron-SLIDE erstellt.
- Link zur Quelle in Wikiversity: https://de.wikiversity.org/wiki/Zufallsvariable
- siehe auch weitere Informationen zu Wiki2Reveal und unter Wiki2Reveal-Linkgenerator.
Wikipedia2Wikiversity
BearbeitenDiese Seite wurde auf Basis der folgenden Wikipedia-Quelle erstellt: