Affines Schema/Syzygiengarbe zu Idealerzeugern/Bemerkung
Zu Elementen in einem kommutativen Ring gehört der Modulhomomorphismus , . Das Bild ist das von den erzeugte Ideal, insbesondere ist diese Abbildung nur dann surjektiv, wenn die das Einheitsideal erzeugen. Der zugehörige Modulhomomorphismus ist im Allgemeinen auch nicht surjektiv und der Kern ist im Allgemeinen nicht lokal frei. Wenn man allerdings die Einschränkung dieses Garbenhomomorphismus auf die offene Teilmenge betrachtet, also , so erhält man einen surjektiven Garbenhomomorphismus, da auf den einzelnen wegen ein surjektiver Garbenhomomorphismus vorliegt. Der Kern ist dann nach Fakt eine lokal freie Garbe auf dem quasiaffinen Schema , es wird mit bezeichnet, man sprich von einer Syzygiengarbe oder Kerngarbe. Wenn ein lokaler Ring ist und die ein Ideal erzeugen, dass zum maximalen Ideal primär ist (d.h. die schneiden geometrisch den abgeschlossenen Punkt heraus), so ist die Syzygiengarbe eine lokal freie Garbe auf dem punktierten Spektrum .