Ausschöpfung/Schrumpfung/Riemannsche Summen/Monotone Funktion/Aufgabe

Es sei

eine streng wachsende Funktion. Zu betrachten wir die äquidistante Unterteilung des Einheitsintervalls in gleichlange Teilintervalle und die zugehörige maximale untere Treppenfunktion von und die zugehörige minimale obere Treppenfunktion . Es seien bzw. die zugehörigen Subgraphen.

a) Zeige, dass im Allgemeinen , , keine Ausschöpfung und , , keine Schrumpfung ist.

b) Zeige, dass , , eine Ausschöpfung und , , eine Schrumpfung ist.

c) Welche Mengen werden in (b) ausgeschöpft bzw. geschrumpft, und wie verhalten sich diese Mengen zum Subgraphen von ?

d) Wogegen konvergieren die zugehörigen Folgen von Treppenintegrale?