Bilinearform/Gramsche Matrix/Textabschnitt


Definition  

Es sei ein Körper, ein endlichdimensionaler -Vektorraum und eine Bilinearform auf . Es sei eine Basis von . Dann heißt die -Matrix

die Gramsche Matrix von bezüglich dieser Basis.

In Beispiel bildet die Gramsche Matrix der Bilinearform bezüglich der Standardbasis des , im Fall des Standardskalarproduktes ist das die Einheitsmatrix. Wenn die Gramsche Matrix zu einer Bilinearform bezüglich einer Basis gegeben ist, so kann man daraus für beliebige Vektoren berechnen. Man schreibt und und erhält mit dem allgemeinen Distributivgesetz (siehe Aufgabe)

Man erhält also den Wert der Bilinearform an zwei Vektoren, indem man die Gramsche Matrix auf das Koordinatentupel des zweiten Vektors anwendet und das Ergebnis (ein Spaltenvektor) mit dem Koordinatentupel des ersten Vektors als Zeilentupel von links multipliziert. Kurz und etwas ungenau ist also



Lemma  

Es sei ein Körper, ein endlichdimensionaler -Vektorraum und eine Bilinearform auf . Es seien und zwei Basen von und es seien bzw. die Gramschen Matrizen von bezüglich dieser Basen. Zwischen den Basiselementen gelte die Beziehungen

die wir durch die Übergangsmatrix ausdrücken.

Dann besteht zwischen den Gramschen Matrizen die Beziehung

Beweis  

Es ist