Die Körpererweiterung besitzt ein endliches
-Algebraerzeugendensystem,
also
.
Nach
Fakt
ist ein
-Algebraautomorphismus
-
durch
, ,
eindeutig festgelegt. Da jedes nach
Fakt
algebraisch
ist, gibt es Polynome
-
mit
.
Nach
Fakt
ist auch
.
Die Polynome besitzen aber nach
Fakt
jeweils nur endlich viele Nullstellen, sodass nur endlich viele Werte für in Frage kommen.