Extrema/Nebenbedingung/Allgemein/Fakt

Satz über lokale Extrema unter Nebenbedingungen

Es sei eine offene Teilmenge und sei

eine stetig differenzierbare Abbildung, . Es sei die Faser von über . Es sei

eine differenzierbare Funktion und die eingeschränkte Funktion besitze im Punkt ein lokales Extremum auf und sei ein regulärer Punkt von .

Dann ist

d.h. die Linearform verschwindet auf dem Tangentialraum an der Faser von durch .

Die Linearform ist eine Linearkombination aus den Linearformen