Fallende Funktion/Uneigentliches Integral und Reihe/Vergleichskriterium/Fakt/Beweis
Beweis
Wenn das uneigentliche Integral existiert, so betrachten wir die Abschätzung
die darauf beruht, dass die linke Seite das
Treppenintegral
zu einer
unteren Treppenfunktion
für auf ist. Da die rechte Seite beschränkt ist, gilt dies auch für die linke Seite, sodass wegen
die Reihe konvergiert.
Ist umgekehrt die Reihe konvergent, so betrachten wir die Abschätzung
die gilt, da die rechte Seite das Treppenintegral zu einer
oberen Treppenfunktion
ist. Wegen
ist die Integralfunktion
wachsend
und beschränkt, da die rechte Seite wegen der Konvergenz der Reihe beschränkt ist. Daher besitzt die Integralfunktion für einen
Grenzwert
und das uneigentliche Integral existiert.