Gebiet/Sternförmig ohne Punkte/Differentialform/Residuum/Exakt/Fakt/Beweis
Beweis
Die Abbildungen sind nach Fakt (4) und Fakt (4) -linear. Da selbst ein Gebiet ist, stimmen die konstanten Funktionen mit den Funktionen überein, deren Ableitung gleich ist. Deshalb ist der Komplex in exakt. Die Surjektivität hinten ist klar, da die auf holomorphe Differentialform auf das Residuentupel abbildet.
Es sei eine holomorphe Funktion auf gegeben, und es sei die Laurent-Reihe von in . Die zugehörige Differentialform
besitzt dann in eine Laurent-Reihe mit verschwindendem Residuum. Es sei nun umgekehrt eine holomorphe Differentialform auf , deren Residuen in den Punkten gleich seien. Dies bedeutet nach Fakt, dass es zu jedem Punkt eine offene Umgebung gibt, auf der eine Stammfunktion besitzt.