Wir betrachten die Produktabbildung
-
Das zugehörige
Gradientenfeld
ist
-
Die
Fasern
von sind das Achsenkreuz
(die Faser über )
und die durch
, ,
gegebenen
Hyperbeln.
Die
Lösungen
der
linearen Differentialgleichung
-
sind von der Form
-
mit beliebigen
,
wie man direkt nachrechnet und was sich auch aus
Fakt
bzw.
Aufgabe
ergibt. Dabei ist
.
Für
ist dies die
stationäre Lösung
im Nullpunkt, in dem die Produktabbildung nicht
regulär
ist. Bei
ist
,
das Bild dieser Lösung ist die obere Halbdiagonale
(ohne den Nullpunkt),
bei
ist
,
das Bild dieser Lösung ist die untere Halbdiagonale, bei
und
ist
,
das Bild dieser Lösung ist die untere Hälfte der Nebendiagonalen, bei
und
ist
,
das Bild dieser Lösung ist die obere Hälfte der Nebendiagonalen.
Ansonsten treffen die Lösungskurven das Achsenkreuz in einem Punkt . Wenn man diesen Punkt als Anfangswert zum Zeitpunkt
nimmt, so kann man die Lösungskurven als
-
(zum Zeitpunkt befindet sich die Lösung auf der Achse im Punkt ),
und als
-
(zum Zeitpunkt
befindet sich die Lösung auf der Achse im Punkt )
realisieren. Die Bahnen dieser Lösungen erfüllen die Gleichung
bzw. ,
d.h. sie sind selbst Hyperbeln.