Komplexe Mannigfaltigkeit/Überlagerung/Holomorphe Funktion/Gruppenoperation/Aufgabe

Es sei eine holomorphe Überlagerung zwischen den komplexen Mannigfaltigkeiten und .

  1. Zeige, dass zu einer holomorphen Funktion die nach zurückgezogene Funktion

    die Eigenschaft besitzt, dass für jede Decktransformation die Gleichheit

    gilt.

  2. Die Überlagerung sei nun normal. Es sei

    eine holomorphe Funktion mit der Eigenschaft, dass für jede Decktransformation die Identität gilt. Zeige, dass es eine holomorphe Funktion mit gibt.