Kurs:Analysis (Osnabrück 2013-2015)/Teil II/Arbeitsblatt 52/latex
\setcounter{section}{52}
\zwischenueberschrift{Übungsaufgaben}
Mit diffeomorph ist im Folgenden stets $C^1$-diffeomorph gemeint.
\inputaufgabe
{}
{
Definiere explizit einen
\definitionsverweis {Diffeomorphismus}{}{} zwischen $\R^n$ und einer offenen Kugel
\mathl{U { \left( 0,r \right) } \subseteq \R^n}{.}
}
{} {}
\inputaufgabe
{}
{
Zeige, dass eine offene Kreisscheibe
\mathl{U { \left( P,r \right) } \subseteq \R^2}{}
\zusatzklammer {\mathlk{r >0}{}} {} {}
und ein offenes Rechteck
\mathl{]a,b[ \times ]c,d[}{}
\zusatzklammer {\mathlk{b >a, d>c}{}} {} {}
\definitionsverweis {diffeomorph}{}{}
sind.
}
{} {}
\inputaufgabe
{}
{
Bestimme die
\definitionsverweis {regulären Punkte}{}{}
der
\definitionsverweis {Abbildung}{}{}
\maabbeledisp {\varphi} {\R^2} {\R^2
} {(x,y)} {(x^2y,x- \sin y )
} {.}
Zeige, dass $\varphi$ in
\mathl{P=(1,0)}{} regulär ist und bestimme das
\definitionsverweis {totale Differential}{}{}
der
\definitionsverweis {Umkehrabbildung}{}{}
von $\varphi |_U$ in $\varphi(P)$, wobei $U$ eine offene Umgebung von $P$ sei
\zusatzklammer {die nicht explizit angegeben werden muss} {} {.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Man gebe für jedes
\mathl{n \in \N_+}{} eine bijektive,
\definitionsverweis {total differenzierbare}{}{}
Abbildung
\maabbdisp {\varphi_n} {\R^n} {\R^n
} {}
an, für die das totale Differential in mindestens einem Punkt nicht
\definitionsverweis {regulär}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es seien
\mathl{U,V,W}{}
\definitionsverweis {euklidische Vektorräume}{}{}
und seien
\mathkor {} {\varphi:U \longrightarrow V} {und} {\psi:V \longrightarrow W} {}
\definitionsverweis {differenzierbare Abbildungen}{}{.}
Es sei $\varphi$
\definitionsverweis {regulär}{}{}
in
\mavergleichskette
{\vergleichskette
{P
}
{ \in }{U
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und $\psi$ regulär in
\mavergleichskette
{\vergleichskette
{Q
}
{ = }{\varphi(P)
}
{ \in }{ V
}
{ }{
}
{ }{
}
}
{}{}{.}
Ist dann
\mathl{\psi \circ \varphi}{} regulär in $P$? Unter welchen Voraussetzungen stimmt dies?
}
{} {}
\inputaufgabe
{}
{
Das \definitionsverweis {komplexe}{}{} Quadrieren \maabbeledisp {} {{\mathbb C}} {{\mathbb C} } {z} {z^2 } {,} kann man reell als \maabbeledisp {\varphi} {\R^2} {\R^2 } { x+{ \mathrm i}y = (x,y)} {(x+ { \mathrm i} y)^2 = x^2-y^2 +2{ \mathrm i}xy = (x^2-y^2,2xy) } {,} schreiben. Untersuche $\varphi$ auf \definitionsverweis {reguläre Punkte}{}{.} Auf welchen \zusatzklammer {möglichst großen} {} {} offenen Teilmengen ist $\varphi$ \definitionsverweis {umkehrbar}{}{?}
}
{} {}
\inputaufgabe
{}
{
Finde möglichst große offene Teilmengen
\mathl{G \subseteq {\mathbb C} \cong \R^2}{} und
\mathl{H \subseteq {\mathbb C}}{} derart, dass die Abbildung
\maabbeledisp {} {{\mathbb C}} {{\mathbb C}
} {z} {z^3
} {,}
einen
\definitionsverweis {Diffeomorphismus}{}{} von $G$ nach $H$ induziert.
}
{} {}
\inputaufgabegibtloesung
{}
{
Wir betrachten die Abbildung \maabbeledisp {\varphi} { \R \setminus \{0\} \times \R } {\R^2 } {(x,y)} {\left( { \frac{ y^2 }{ x } } , \, { \frac{ y^3 }{ x^2 } } \right) } {.}
a) Bestimme die regulären Punkte der Abbildung $\varphi$.
b) Zeige, dass $\varphi$ in
\mathl{P=(1,2)}{} lokal eine differenzierbare Umkehrabbildung
\mathl{\psi= \varphi^{-1}}{} besitzt, und bestimme das totale Differential von $\psi$ im Punkt
\mathl{\varphi(P)}{.}
c) Man gebe alle Punkte
\mathl{Q \in \R \setminus \{0\} \times \R}{} an, in denen $\varphi$ nicht lokal invertierbar ist.
}
{} {}
\inputaufgabe
{}
{
Es seien
\mathl{P_1 , \ldots , P_n}{} und
\mathl{Q_1 , \ldots , Q_n}{} Punkte in der Ebene $\R^2$. Zeige, dass die beiden offenen Mengen
\mathl{U=\R^2 \setminus \{P_1 , \ldots , P_n\}}{} und
\mathl{V=\R^2 \setminus \{Q_1 , \ldots , Q_n\}}{} zueinander
\definitionsverweis {diffeomorph}{}{}
sind.
}
{} {}
\inputaufgabe
{}
{
Es sei
\mavergleichskettedisp
{\vergleichskette
{T
}
{ =} { { \left\{ { \frac{ 1 }{ n } } \mid n \in \N_+ \right\} } \cup \{0\}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
\mavergleichskettedisp
{\vergleichskette
{U
}
{ =} {\R \setminus T
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und
\mavergleichskettedisp
{\vergleichskette
{V
}
{ =} {\R \setminus \N
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Zeige, dass
\mathkor {} {U} {und} {V} {}
zueinander
\definitionsverweis {diffeomorph}{}{}
sind.
}
{} {}
\inputaufgabe
{}
{
Es sei
\mavergleichskettedisp
{\vergleichskette
{T
}
{ =} { { \left\{ \left( { \frac{ 1 }{ n } },0 \right) \mid n \in \N_+ \right\} } \cup \{(0,0)\}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
\mavergleichskettedisp
{\vergleichskette
{U
}
{ =} {\R^2 \setminus T
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und
\mavergleichskettedisp
{\vergleichskette
{V
}
{ =} {\R^2 \setminus \N
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Zeige, dass
\mathkor {} {U} {und} {V} {}
zueinander nicht
\definitionsverweis {homöomorph}{}{}
sind.
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{}
{
Betrachte die
\definitionsverweis {Abbildung}{}{}
\maabbeledisp {\varphi} {\R^2} {\R^2
} {(x,y)} {(x+y,xy)
} {.}
\aufzaehlungvier{Bestimme die
\definitionsverweis {regulären Punkte}{}{}
von $\varphi$.
}{Zeige, dass in den
\definitionsverweis {kritischen Punkten}{}{} die Abbildung $\varphi$ nicht
\definitionsverweis {lokal invertierbar}{}{}
ist, dass also die Einschränkung von $\varphi$ in keiner offenen Umgebung eines kritischen Punktes bijektiv wird.
}{Lässt sich jedes reelle Zahlenpaar
\mathl{(s,p)}{} als $(s,p)=(x+y,xy)$ schreiben?
}{Ist ein reelles Zahlenpaar
\mathl{(x,y)}{} bis auf Vertauschen der Komponenten eindeutig durch die Summe
\mathl{x+y}{} und das Produkt
\mathl{xy}{} festgelegt?
}
}
{} {}
\inputaufgabe
{}
{
Betrachte die
\definitionsverweis {Abbildung}{}{}
\maabbeledisp {\varphi} {\R^3} {\R^3
} {(x,y,z)} {(x+y+z,xy+xz+yz,xyz)
} {.}
Zeige, dass ein Punkt
\mathl{(x,y,z)}{} genau dann ein
\definitionsverweis {kritischer Punkt}{}{}
von $\varphi$ ist, wenn in
\mathl{(x,y,z)}{} zwei Zahlen doppelt vorkommen.
}
{} {}
\inputaufgabe
{}
{
Betrachte die \definitionsverweis {Abbildung}{}{} \maabbeledisp {\varphi} {\R^3} {\R^2 } {(x,y,z)} {(x^2-y^2z,y+ \sin xz ) } {.} Zeige, dass die Menge der \definitionsverweis {kritischen Punkte}{}{} von $\varphi$ eine Gerade umfasst, aber auch noch weitere \zusatzklammer {mindestens einen} {} {} Punkte enthält.
}
{} {}
\inputaufgabe
{}
{
Wir betrachten die Abbildung
\maabbeledisp {\varphi} {\R^2} {\R^2
} {(x,y)} {(x,xy)
} {.}
Bestimme die
\definitionsverweis {regulären Punkte}{}{,}
die
\definitionsverweis {Fasern}{}{,}
das
\definitionsverweis {Bild}{}{}
und das Bild aller regulären Punkte dieser Abbildung. Man gebe möglichst große offene Mengen
\mathl{U_1 , U_2 \subseteq \R^2}{} derart an, dass
\maabbdisp {\varphi {{|}}_{U_1}} {U_1} {U_2
} {}
ein
\definitionsverweis {Diffeomorphismus}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es seien
\mathl{U_1,U_2 \subseteq \R^k}{} und
\mathl{V_1,V_2 \subseteq \R^n}{}
\definitionsverweis {offene Teilmengen}{}{} mit
\mathl{0 \in V_1,V_2}{} und es sei
\maabbdisp {\varphi} {U_1 \times V_1} {U_2 \times V_2
} {}
ein
\definitionsverweis {Diffeomorphismus}{}{,} der eine
\definitionsverweis {Bijektion}{}{} zwischen
\mathkor {} {U_1 \times \{0\}} {und} {U_2 \times \{0\}} {}
induziert. Zeige, dass dann auch die Einschränkung von $\varphi$ auf
\mathl{U_1 \cong U_1 \times \{0\}}{} nach
\mathl{U_2 \cong U_2 \times \{0\}}{} ein Diffeomorphismus ist.
}
{} {}
<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil II | >> |
---|