Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Vorlesung 11/latex

\setcounter{section}{11}

Nachdem wir das Grenzwertverhalten von Folgen und Reihen für die beiden Körper $\R$ und ${\mathbb C}$ zur Verfügung haben, wenden wir uns in den nächsten Vorlesungen dem Grenzwertverhalten von Funktionen zu. Die einfachsten Funktionen \zusatzklammer {abgesehen von den linearen Funktionen, die in der linearen Algebra im Mittelpunkt stehen} {} {} sind die Polynomfunktionen.






\zwischenueberschrift{Der Polynomring über einem Körper}




\inputdefinition
{}
{

Der \definitionswort {Polynomring}{} über einem \definitionsverweis {Körper}{}{} $K$ besteht aus allen Polynomen
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} { a_0 + a_1X+a_2X^2 + \cdots + a_nX^n }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ a_i }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} und mit komponentenweiser Addition und einer Multiplikation, die durch distributive Fortsetzung der Regel
\mavergleichskettedisp
{\vergleichskette
{ X^n \cdot X^m }
{ \defeq} { X^{n+m} }
{ } { }
{ } { }
{ } { }
} {}{}{} definiert ist.

}

Ein Polynom
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} { \sum_{ i = 0 }^{ n } a_{ i } X^{ i } }
{ =} { a_0 + a_1X + a_2X^2 + \cdots + a_{ n } X^{ n } }
{ } { }
{ } { }
} {}{}{} ist formal gesehen nichts anderes als das Tupel
\mathl{(a_0,a_1 , \ldots , a_n )}{,} die die \stichwort {Koeffizienten} {} des Polynoms heißen. Zwei Polynome sind genau dann gleich, wenn sie in allen ihren Koeffizienten übereinstimmen. Der Körper $K$ heißt in diesem Zusammenhang der \stichwort {Grundkörper} {} des Polynomrings. Aufgrund der komponentenweisen Definition der Addition liegt unmittelbar eine Gruppe vor, mit dem \stichwort {Nullpolynom} {} \zusatzklammer {bei dem alle Koeffizienten $0$ sind} {} {} als neutralem Element. Die Polynome mit
\mavergleichskettedisp
{\vergleichskette
{a_i }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{i }
{ \geq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} heißen \stichwort {konstante Polynome} {,} man schreibt sie einfach als $a_0$.

Die für ein einfaches Tupel zunächst ungewöhnliche Schreibweise deutet in suggestiver Weise an, wie die Multiplikation aussehen soll, das Produkt
\mathl{X^{n} \cdot X^{m}}{} ist nämlich durch die Addition der Exponenten gegeben. Dabei nennt man $X$ die \stichwort {Variable} {} des Polynomrings. Für beliebige Polynome ergibt sich die Multiplikation aus dieser einfachen Multiplikationsbedingung durch distributive Fortsetzung gemäß der Vorschrift, \anfuehrung{alles mit allem}{} zu multiplizieren. Die Multiplikation ist also explizit durch folgende Regel gegeben:
\mathdisp {{ \left( \sum_{ i = 0 }^{ n } a_{ i } X^{ i } \right) } \cdot { \left( \sum_{ j = 0 }^{ m } b_{ j } X^{ j } \right) } = \sum_{ k = 0 }^{ n+m } c_{ k } X^{ k } \text{ mit } c_{ k} =\sum_{ r= 0}^{ k } a_{ r } b_{ k - r }} { . }
Die Multiplikation ist assoziativ, kommutativ, distributiv und besitzt das konstante Polynom $1$ als neutrales Element, siehe Aufgabe 11.2.






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Polynomialdeg5.svg} }
\end{center}
\bildtext {Der Graph einer Polynomfunktion von $\R$ nach $\R$ vom Grad $5$.} }

\bildlizenz { Polynomialdeg5.svg } {} {Geek3} {Commons} {CC-by-sa 3.0} {}

In ein Polynom
\mavergleichskette
{\vergleichskette
{P }
{ \in }{K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} kann man ein Element
\mavergleichskette
{\vergleichskette
{a }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \stichwort {einsetzen} {,} indem man die Variable $X$ an jeder Stelle durch $a$ ersetzt. Dies führt zu einer Abbildung \maabbeledisp {} {K} {K } {a} {P(a) } {,} die die durch das Polynom definierte \stichwort {Polynomfunktion} {} heißt.




\inputdefinition
{}
{

Der \definitionswort {Grad}{} eines von $0$ verschiedenen Polynoms
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {a_0 + a_1X+a_2X^2 + \cdots + a_nX^n }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{a_n }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist $n$.

}

Das Nullpolynom bekommt keinen Grad. Der Koeffizient $a_n$, der zum Grad $n$ des Polynoms gehört, heißt \stichwort {Leitkoeffizient} {} des Polynoms. Der Ausdruck
\mathl{a_nX^n}{} heißt \stichwort {Leitterm} {.}






\zwischenueberschrift{Division mit Rest}




\inputfaktbeweis
{Polynomring_über_Körper/Eine_Variable/Division_mit_Rest/Fakt}
{Satz}
{}
{

\faktsituation {}
\faktvoraussetzung {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es seien
\mavergleichskette
{\vergleichskette
{P,T }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} Polynome mit
\mavergleichskette
{\vergleichskette
{T }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Dann gibt es eindeutig bestimmte Polynome
\mavergleichskette
{\vergleichskette
{Q,R }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mathdisp {P = T Q + R \text{ und mit } \operatorname{grad} \, (R) < \operatorname{grad} \, (T) \text{ oder } R = 0} { . }
}
\faktzusatz {}
\faktzusatz {}

}
{

Wir beweisen die Existenzaussage durch Induktion über den \definitionsverweis {Grad}{}{} von $P$. Wenn der Grad von $T$ größer als der Grad von $P$ ist, so ist \mathkor {} {Q=0} {und} {R=P} {} eine Lösung, sodass wir dies nicht weiter betrachten müssen. Bei
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (P) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist nach der Vorbemerkung auch
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (TP) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} also ist $T$ ein konstantes Polynom, und damit ist \zusatzklammer {da
\mavergleichskettek
{\vergleichskettek
{T }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und $K$ ein Körper ist} {} {} \mathkor {} {Q=P/T} {und} {R=0} {} eine Lösung. Es sei nun
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (P) }
{ = }{ n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und die Aussage für kleineren Grad schon bewiesen. Wir schreiben \mathkor {} {P= a_nX^n + \cdots + a_1X+a_0} {und} {T= b_kX^k + \cdots + b_1X+b_0} {} mit
\mathl{a_n, b_k \neq 0,\, k \leq n}{.} Dann gilt mit
\mavergleichskette
{\vergleichskette
{ H }
{ = }{ { \frac{ a_n }{ b_k } } X^{n-k} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Beziehung
\mavergleichskettealignhandlinks
{\vergleichskettealignhandlinks
{ P' }
{ \defeq} { P-TH }
{ =} { 0X^n + { \left( a_{n-1} - \frac{a_n}{b_k} b_{k-1} \right) } X^{n-1} + \cdots + { \left( a_{n-k} - \frac{a_n}{b_k} b_{0} \right) } X^{n-k} + a_{n-k-1}X^{n-k-1} + \cdots + a_0 }
{ } { }
{ } { }
} {} {}{.} Dieses Polynom $P'$ hat einen Grad kleiner als $n$ und darauf können wir die Induktionsvoraussetzung anwenden, d.h. es gibt \mathkor {} {Q'} {und} {R'} {} mit
\mathdisp {P' = T Q' + R' \text{ mit } \operatorname{grad} \, (R') < \operatorname{grad} \, (T) \text{ oder } R' = 0} { . }
Daraus ergibt sich insgesamt
\mavergleichskettedisp
{\vergleichskette
{ P }
{ =} { P'+TH }
{ =} { TQ'+TH+R' }
{ =} { T(Q'+H)+R' }
{ } {}
} {}{}{,} sodass also
\mavergleichskette
{\vergleichskette
{ Q }
{ = }{ Q'+H }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ R' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Lösung ist. \teilbeweis {}{}{}
{Zur Eindeutigkeit sei
\mavergleichskette
{\vergleichskette
{ P }
{ = }{ TQ+R }
{ = }{ TQ'+R' }
{ }{ }
{ }{ }
} {}{}{} mit den angegebenen Bedingungen. Dann ist
\mavergleichskette
{\vergleichskette
{ T(Q-Q') }
{ = }{ R'-R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Da die Differenz
\mathl{R'-R}{} einen Grad kleiner als
\mathl{\operatorname{grad} \, (T)}{} besitzt, ist aufgrund der Gradeigenschaften diese Gleichung nur bei
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ R' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ Q }
{ = }{ Q' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} lösbar.}
{}

}


Der Beweis des Satzes ist konstruktiv, d.h. es wird in ihm ein Verfahren beschrieben, mit der man die Division mit Rest berechnen kann. Dazu muss man die Rechenoperationen des Grundkörpers beherrschen. Wir geben dazu zwei Beispiele, eines über den rationalen Zahlen und eines über den komplexen Zahlen.


\inputbeispiel{}
{

Wir führen die \definitionsverweis {Polynomdivision}{}{}
\mathdisp {P=6 X^3+X+1 \text{ durch } T= 3X^2+2X-4} { }
\zusatzklammer {über $\Q$} {} {} durch. Es wird also ein Polynom vom Grad $3$ durch ein Polynom vom Grad $2$ dividiert, d.h. dass der Quotient und auch der Rest \zusatzklammer {maximal} {} {} vom Grad $1$ sind. Im ersten Schritt überlegt man, mit welchem Term man $T$ multiplizieren muss, damit das Produkt mit $P$ im Leitterm übereinstimmt. Das ist offenbar $2X$. Das Produkt ist
\mavergleichskettedisp
{\vergleichskette
{ 2X { \left( 3X^2+2X-4 \right) } }
{ =} { 6X^3 +4 X^2 -8 X }
{ } { }
{ } { }
{ } { }
} {}{}{.} Die Differenz von $P$ zu diesem Produkt ist
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ 6 X^3+X+1 - { \left( 6X^3 +4 X^2 -8 X \right) } }
{ =} { -4 X^2 +9X +1 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Mit diesem Polynom, nennen wir es $P'$, setzen wir die Division durch $T$ fort. Um Übereinstimmung im Leitkoeffizienten zu erhalten, muss man $T$ mit
\mathl{{ \frac{ -4 }{ 3 } }}{} multiplizieren. Dies ergibt
\mavergleichskettedisp
{\vergleichskette
{- { \frac{ 4 }{ 3 } } T }
{ =} { - { \frac{ 4 }{ 3 } } { \left( 3X^2 +2X-4 \right) } }
{ =} { -4X^2 - { \frac{ 8 }{ 3 } } X + { \frac{ 16 }{ 3 } } }
{ } { }
{ } { }
} {}{}{.} Die Differenz zu $P'$ ist somit
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ -4 X^2 +9X +1 - { \left( -4X^2 - { \frac{ 8 }{ 3 } } X + { \frac{ 16 }{ 3 } } \right) } }
{ =} { { \frac{ 35 }{ 3 } } X - { \frac{ 13 }{ 3 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dies ist das Restpolynom und somit ist insgesamt
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ 6 X^3 +X + 1 }
{ =} { { \left( 3X^2 +2 X-4 \right) } { \left( 2X - { \frac{ 4 }{ 3 } } \right) } + { \frac{ 35 }{ 3 } } X - { \frac{ 13 }{ 3 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}


}




\inputbeispiel{}
{

Wir führen die \definitionsverweis {Polynomdivision}{}{}
\mathdisp {P=(4+3 { \mathrm i} )X^3+X^2+5 { \mathrm i} \text{ durch } T=(1+ { \mathrm i} )X^2+X -3 +2 { \mathrm i}} { }
aus. Das Inverse zu
\mathl{1+ { \mathrm i}}{} ist
\mathl{{ \frac{ 1 }{ 2 } } - { \frac{ 1 }{ 2 } } { \mathrm i}}{} und daher ist
\mavergleichskettealign
{\vergleichskettealign
{ (4+3 { \mathrm i} ) (1+ { \mathrm i} )^{-1} }
{ =} { (4+3 { \mathrm i} ) { \left( { \frac{ 1 }{ 2 } } - { \frac{ 1 }{ 2 } } { \mathrm i} \right) } }
{ =} { 2 + { \frac{ 3 }{ 2 } } -2 { \mathrm i} + { \frac{ 3 }{ 2 } } { \mathrm i} }
{ =} { { \frac{ 7 }{ 2 } } - { \frac{ 1 }{ 2 } } { \mathrm i} }
{ } { }
} {} {}{.} Daher beginnt $Q$ mit
\mathl{{ \left( { \frac{ 7 }{ 2 } } - { \frac{ 1 }{ 2 } } { \mathrm i} \right) } X}{} und es ist
\mavergleichskettealigndrucklinks
{\vergleichskettealigndrucklinks
{ ( (1+ { \mathrm i} )X^2+X -3 +2 { \mathrm i} ) { \left( { \frac{ 7 }{ 2 } } - { \frac{ 1 }{ 2 } } { \mathrm i} \right) } X }
{ =} { (4+3 { \mathrm i} ) X^3 + { \left( { \frac{ 7 }{ 2 } } - { \frac{ 1 }{ 2 } } { \mathrm i} \right) } X^2 + { \left( -{ \frac{ 19 }{ 2 } } + { \frac{ 17 }{ 2 } } { \mathrm i} \right) } X }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dies muss man nun von $P$ abziehen und erhält
\mavergleichskettealigndrucklinks
{\vergleichskettealigndrucklinks
{ P - { \left( (4+3 { \mathrm i} ) X^3 + { \left( { \frac{ 7 }{ 2 } } - { \frac{ 1 }{ 2 } } { \mathrm i} \right) } X^2 + { \left( -{ \frac{ 19 }{ 2 } } + { \frac{ 17 }{ 2 } } { \mathrm i} \right) } X \right) } }
{ =} { { \left( -{ \frac{ 5 }{ 2 } } + { \frac{ 1 }{ 2 } } { \mathrm i} \right) } X^2 + { \left( { \frac{ 19 }{ 2 } } -{ \frac{ 17 }{ 2 } } { \mathrm i} \right) } X + 5 { \mathrm i} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Auf dieses Polynom \zusatzklammer {nennen wir es $P'$} {} {} wird das gleiche Verfahren angewendet. Man berechnet
\mavergleichskettealign
{\vergleichskettealign
{ { \left( -{ \frac{ 5 }{ 2 } } + { \frac{ 1 }{ 2 } } { \mathrm i} \right) } { \left( { \frac{ 1 }{ 2 } } - { \frac{ 1 }{ 2 } } { \mathrm i} \right) } }
{ =} { -1 + { \frac{ 3 }{ 2 } } { \mathrm i} }
{ } { }
{ } { }
{ } { }
} {} {}{.} Daher ist der konstante Term von $Q$ gleich
\mathl{-1 + { \frac{ 3 }{ 2 } } { \mathrm i}}{} und es ergibt sich
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ { \left( (1+ { \mathrm i} )X^2+X -3 +2 { \mathrm i} \right) } { \left( -1 + { \frac{ 3 }{ 2 } } { \mathrm i} \right) } }
{ =} { { \left( -{ \frac{ 5 }{ 2 } } + { \frac{ 1 }{ 2 } } { \mathrm i} \right) } X^2 + { \left( -1 + { \frac{ 3 }{ 2 } } { \mathrm i} \right) } X - { \frac{ 13 }{ 2 } } { \mathrm i} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dies ziehen wir von $P'$ ab und erhalten
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{P' - { \left( { \left( -{ \frac{ 5 }{ 2 } } + { \frac{ 1 }{ 2 } } { \mathrm i} \right) } X^2 + { \left( -1 + { \frac{ 3 }{ 2 } } { \mathrm i} \right) } X - { \frac{ 13 }{ 2 } } { \mathrm i} \right) } }
{ =} { { \left( { \frac{ 21 }{ 2 } } - 10 { \mathrm i} \right) } X + { \frac{ 23 }{ 2 } } { \mathrm i} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dies ist der Rest $R$, die vollständige Division mit Rest ist also
\mavergleichskettealigndrucklinks
{\vergleichskettealigndrucklinks
{ (4+3 { \mathrm i} )X^3+X^2+5 { \mathrm i} }
{ =} { ((1+ { \mathrm i} )X^2+X -3 +2 { \mathrm i} ) { \left( { \left( { \frac{ 7 }{ 2 } } - { \frac{ 1 }{ 2 } } { \mathrm i} \right) } X-1 + { \frac{ 3 }{ 2 } } { \mathrm i} \right) } + { \left( { \frac{ 21 }{ 2 } } -10 { \mathrm i} \right) } X + { \frac{ 23 }{ 2 } } { \mathrm i} }
{ } { }
{ } { }
{ } { }
} {}{}{.}


}






\zwischenueberschrift{Nullstellen}

Unter einer Nullstelle eines Polynoms $P$ versteht man ein
\mavergleichskette
{\vergleichskette
{a }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{P(a) }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Ein Polynom muss keine Nullstellen besitzen, ferner hängt dies vom Grundkörper ab. Das Polynom
\mathl{X^2+1}{} hat keine reelle Nullstelle, dagegen gibt es die komplexen Nullstellen \mathkor {} {{ \mathrm i}} {und} {-{ \mathrm i}} {.} Als Element in
\mathl{\R[X]}{} kann man
\mathl{X^2+1}{} nicht als Produkt von einfacheren Polynomen schreiben, in
\mathl{{\mathbb C}[X]}{} hingegen hat man die Zerlegung
\mavergleichskette
{\vergleichskette
{ X^2+1 }
{ = }{ (X-{ \mathrm i} )(X+{ \mathrm i} ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}





\inputfaktbeweis
{Polynomring (Körper)/Nullstellen/Linearer Faktor/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{P }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Polynom und
\mavergleichskette
{\vergleichskette
{a }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Dann ist $a$ genau dann eine \definitionsverweis {Nullstelle}{}{} von $P$, wenn $P$ ein Vielfaches des linearen Polynoms
\mathl{X-a}{} ist.}
\faktzusatz {}
\faktzusatz {}

}
{

Wenn $P$ ein Vielfaches von
\mathl{X-a}{} ist, so kann man
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {(X-a)Q }
{ } { }
{ } { }
{ } { }
} {}{}{} mit einem weiteren Polynom $Q$ schreiben. Einsetzen ergibt
\mavergleichskettedisp
{\vergleichskette
{ P(a) }
{ =} { (a-a) Q(a) }
{ =} { 0 }
{ } { }
{ } { }
} {}{}{.} Im Allgemeinen gibt es aufgrund der Division mit Rest eine Darstellung
\mavergleichskettedisp
{\vergleichskette
{ P }
{ =} { (X-a)Q +R }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} oder aber den Grad $0$ besitzt, also so oder so eine Konstante ist. Einsetzen ergibt
\mavergleichskettedisp
{\vergleichskette
{ P(a) }
{ =} { R }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wenn also
\mavergleichskette
{\vergleichskette
{ P(a) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, so muss der Rest
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sein, und das bedeutet, dass
\mavergleichskette
{\vergleichskette
{ P }
{ = }{ (X-a)Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.

}





\inputfaktbeweis
{Polynomring (Körper)/Nullstellen/Anzahl/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{P }
{ \in }{K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Polynom \zusatzklammer {\mathlk{\neq 0}{}} {} {} vom \definitionsverweis {Grad}{}{} $d$.}
\faktfolgerung {Dann besitzt $P$ maximal $d$ Nullstellen.}
\faktzusatz {}
\faktzusatz {}

}
{

Wir beweisen die Aussage durch Induktion über $d$. Für
\mavergleichskette
{\vergleichskette
{ d }
{ = }{ 0,1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist die Aussage offensichtlich richtig. Es sei also
\mavergleichskette
{\vergleichskette
{d }
{ \geq }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und die Aussage sei für kleinere Grade bereits bewiesen. Es sei $a$ eine Nullstelle von $P$ \zusatzklammer {falls $P$ keine Nullstelle besitzt, sind wir direkt fertig} {} {.} Dann ist
\mavergleichskette
{\vergleichskette
{ P }
{ = }{ Q(X-a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} nach Lemma 11.6 und $Q$ hat den Grad
\mathl{d-1}{,} sodass wir auf $Q$ die Induktionsvoraussetzung anwenden können. Das Polynom $Q$ hat also maximal
\mathl{d-1}{} Nullstellen. Für
\mavergleichskette
{\vergleichskette
{b }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt
\mavergleichskette
{\vergleichskette
{ P(b) }
{ = }{ Q(b)(b-a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dies kann nach Lemma 3.4  (5) nur dann $0$ sein, wenn einer der Faktoren $0$ ist, sodass eine Nullstelle von $P$ gleich $a$ ist oder aber eine Nullstelle von $Q$ ist. Es gibt also maximal $d$ Nullstellen von $P$.

}






\zwischenueberschrift{Der Interpolationssatz}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Interpolation example linear.svg} }
\end{center}
\bildtext {Eine stückweise lineare und} }

\bildlizenz { Interpolation example linear.svg } {} {Berland} {Commons} {gemeinfrei} {}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Interpolation example polynomial.svg} }
\end{center}
\bildtext {eine polynomiale Interpolation.} }

\bildlizenz { Interpolation example polynomial.svg } {} {Berlang} {Commons} {gemeinfrei} {}

Der folgende Satz heißt \stichwort {Interpolationssatz} {} und beschreibt die Interpolation von vorgegebenen Funktionswerten durch Polynome. Wenn ein Funktionswert an einer Stelle vorgegeben wird, so legt dies ein konstantes Polynom fest, zwei Funktionswerte an zwei Stellen legen ein lineares Polynom fest \zusatzklammer {eine Gerade} {} {,} drei Funktionswerte an drei Stellen legen ein quadratisches Polynom fest, u.s.w.


\inputfaktbeweis
{Polynom/K/Interpolation/Fakt}
{Satz}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und es seien $n$ verschiedene Elemente
\mavergleichskette
{\vergleichskette
{ a_1 , \ldots , a_n }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und $n$ Elemente
\mavergleichskette
{\vergleichskette
{ b_1 , \ldots , b_n }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gegeben.}
\faktfolgerung {Dann gibt es ein eindeutiges Polynom
\mavergleichskette
{\vergleichskette
{P }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} vom Grad
\mathl{\leq n-1}{} derart, dass
\mavergleichskette
{\vergleichskette
{ P { \left( a_i \right) } }
{ = }{ b_i }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle $i$ ist.}
\faktzusatz {}
\faktzusatz {}

}
{ Siehe Aufgabe 11.20. }







\inputbemerkung
{}
{

Wenn die Daten
\mathl{a_1 , \ldots , a_n}{} und
\mathl{b_1 , \ldots , b_n}{} gegeben sind, so findet man das interpolierende Polynom $P$ vom Grad $\leq n-1$, das es nach Satz 11.8 geben muss, folgendermaßen: Man macht den Ansatz
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {c_0+c_1X +c_2X^2 + \cdots + c_{n-2}X^{n-2}+c_{n-1}X^{n-1} }
{ } { }
{ } { }
{ } { }
} {}{}{} und versucht die unbekannten Koeffizienten
\mathl{c_0 , \ldots , c_{n-1}}{} zu bestimmen. Jeder Interpolationspunkt
\mathl{(a_i,b_i)}{} führt zu einer linearen Gleichung
\mavergleichskettedisp
{\vergleichskette
{ c_0+c_1a_i +c_2a_i^2 + \cdots + c_{n-2} a_i^{n-2}+c_{n-1} a_i^{n-1} }
{ =} { b_i }
{ } { }
{ } { }
{ } { }
} {}{}{} über $K$. Das entstehende lineare Gleichungssystem besitzt genau eine Lösung
\mathl{(c_0 , \ldots , c_{n-1})}{,} die das Polynom festlegt.

} Lineare Gleichungssysteme werden in der linearen Algebra systematisch behandelt, das Eliminationsverfahren oder ein anderes Lösungsverfahren sollte aber aus der Schule bekannt sein.






\zwischenueberschrift{Rationale Funktionen}

Die nach den Polynomfunktionen einfachsten Funktionen sind die rationalen Funktionen.


\inputdefinition
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{.} Zu \definitionsverweis {Polynomen}{}{}
\mathbed {P,Q \in K [X]} {}
{Q \neq 0} {}
{} {} {} {,} heißt die \definitionsverweis {Funktion}{}{} \maabbeledisp {} {D} { K } {x} { { \frac{ P(x) }{ Q(x) } } } {,} wobei
\mavergleichskette
{\vergleichskette
{D }
{ \subseteq }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} das \definitionsverweis {Komplement}{}{} der \definitionsverweis {Nullstellen}{}{} von $Q$ ist, eine \definitionswort {rationale Funktion}{.}

} Für uns ist der Fall
\mavergleichskette
{\vergleichskette
{K }
{ = }{ {\mathbb K} }
{ = }{ \R }
{ }{ }
{ }{ }
} {}{}{} oder $={\mathbb C}$ wichtig.






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Function-1_x.svg} }
\end{center}
\bildtext {Man kann Brüche $P/Q$ von Polynomen als Funktionen auffassen, die außerhalb der Nullstellen des Nenners definiert sind. Das Beispiel zeigt den Graph der rationalen Funktion $1/X$.} }

\bildlizenz { Function-1 x.svg } {} {Qualc1} {Commons} {CC-by-sa 3.0} {}

Der Polynomring
\mathl{K[X]}{} ist ein kommutativer Ring, aber kein Körper. Man kann aber mit Hilfe der rationalen Funktionen einen Körper konstruieren, der den Polynomring enthält, ähnlich wie man aus $\Z$ die rationalen Zahlen $\Q$ konstruieren kann. Dazu definiert man
\mavergleichskette
{\vergleichskette
{ K(X) }
{ \defeq }{ { \left\{ { \frac{ P }{ Q } } \mid P, Q \in K[X] , \, Q \neq 0 \right\} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} wobei man wieder zwei Brüche \mathkor {} {{ \frac{ P }{ Q } }} {und} {{ \frac{ P' }{ Q' } }} {} miteinander identifiziert, wenn
\mavergleichskette
{\vergleichskette
{ PQ' }
{ = }{ P'Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. Auf diese Weise entsteht der \stichwort {Körper der rationalen Funktionen} {} \zusatzklammer {über $K$} {} {.}