Kurs:Diskrete Mathematik/22/Klausur mit Lösungen/kontrolle



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Punkte 3 3 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 12




Aufgabe (3 Punkte)


Lösung

  1. Eine natürliche Zahl heißt gemeinsamer Teiler der , wenn jedes teilt für .
  2. Geordnete Menge/Teilmenge/Infimum/Definition/Begriff/Inhalt
  3. Verband/Ordnung/Definition/Begriff/Inhalt
  4. Ungerichteter Graph/Kantengraph/Definition/Begriff/Inhalt
  5. Ungerichteter Graph/Weg/Definition/Begriff/Inhalt
  6. Ungerichteter Graph/Planar/Definition/Begriff/Inhalt


Aufgabe (3 Punkte)


Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 Punkte)

Es sei eine endliche Menge und eine Abbildung. Es sei die -fache Hintereinanderschaltung von mit sich selbst. Zeige, dass es natürliche Zahlen mit gibt.


Lösung

Da endlich ist, ist auch die Abbildungsmenge endlich, da es für jedes Element nur viele Möglichkeiten gibt, wohin es abgebildet werden kann. Die Hintereinanderschaltungen , , gehören alle zu dieser Abbildungsmenge. Da es keine injektive Abbildung von in eine endliche Menge gibt, gibt es Zahlen mit


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 Punkte)

Bestimme in mit Hilfe des euklidischen Algorithmus den größten gemeinsamen Teiler von und .


Lösung

Der Euklidische Algorithmus liefert:

Der größte gemeinsame Teiler von und ist also .


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung