Kurs:Grundkurs Mathematik/Teil I/1/Klausur/kontrolle
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 2 | 4 | 3 | 5 | 2 | 3 | 6 | 3 | 2 | 3 | 1 | 2 | 4 | 2 | 3 | 0 | 2 | 6 | 59 |
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (2 Punkte)Referenznummer erstellen
Führe die zweite binomische Formel für rationale Zahlen auf die zweite binomische Formel für ganze Zahlen zurück.
Aufgabe * (4 (2+1+1) Punkte)Referenznummer erstellen
Folgende Aussagen seien bekannt.
- Der frühe Vogel fängt den Wurm.
- Doro wird nicht von Lilly gefangen.
- Lilly ist ein Vogel oder ein Igel.
- Für Igel ist 5 Uhr am Morgen spät.
- Doro ist ein Wurm.
- Für Vögel ist 5 Uhr am Morgen früh.
- Lilly schläft bis 5 Uhr am Morgen und ist ab 5 Uhr unterwegs.
Beantworte folgende Fragen.
- Ist Lilly ein Vogel oder ein Igel?
- Ist sie ein frühes oder ein spätes Tier?
- Fängt der späte Igel den Wurm?
Aufgabe (3 Punkte)Referenznummer erstellen
Illustriere die dritte binomische Formel durch eine geeignete geometrische Figur.
Aufgabe * (5 Punkte)Referenznummer erstellen
Betrachte die Abbildung
Ist injektiv, surjektiv bzw. bijektiv?
Aufgabe * (2 Punkte)Referenznummer erstellen
Es seien Mengen und und injektive Abbildungen. Zeige, dass die Hintereinanderschaltung ebenfalls injektiv ist.
Aufgabe * (3 Punkte)Referenznummer erstellen
Beweise in die Gleichheit
durch Induktion über unter Verwendung der Gleichung , wobei die Nachfolgerabbildung bezeichnet.
Aufgabe * (6 Punkte)Referenznummer erstellen
Zeige, dass die Ordnungsrelation auf den natürlichen Zahlen eine totale Ordnung ist.
Aufgabe * (3 Punkte)Referenznummer erstellen
Beweise durch Induktion die folgende Formel für .
Aufgabe * (2 Punkte)Referenznummer erstellen
Es findet das olympische 100-Meter-Finale mit acht Teilnehmern statt. Sie wissen, welche drei Teilnehmer eine Medaille gewinnen (aber nicht, wer welche Medaille gewinnt). Wie viele Möglichkeiten für das Gesamtergebnis aller acht Teilnehmer verbleiben (keine Platzierung ist doppelt besetzt)?
Aufgabe * (3 Punkte)Referenznummer erstellen
Beweise den Satz, dass es unendlich viele Primzahlen gibt.
Aufgabe * (1 Punkt)Referenznummer erstellen
Führe im Zehnersystem die Addition
schriftlich durch.
Aufgabe * (2 Punkte)Referenznummer erstellen
Bestimme in mit Hilfe des euklidischen Algorithmus den größten gemeinsamen Teiler von und .
Aufgabe * (4 Punkte)Referenznummer erstellen
Beweise das Lemma von Euklid für ganze Zahlen.
Aufgabe * (2 (1+1) Punkte)Referenznummer erstellen
a) Berechne den größten gemeinsamen Teiler der ganzen Zahlen und .
b) Berechne den größten gemeinsamen Teiler der ganzen Zahlen und .
Aufgabe (3 Punkte)Referenznummer erstellen
Erläutere den Begriff Dreisatzaufgabe samt Lösungsverfahren anhand eines typischen Beispiels.
Aufgabe (0 Punkte)Referenznummer erstellen
Aufgabe * (2 Punkte)Referenznummer erstellen
Zeige, dass das Produkt von zwei Dezimalbrüchen wieder eine Dezimalbruch ist.
Aufgabe * (6 (1+1+1+1+2) Punkte)Referenznummer erstellen
Bei einer Fernsehaufzeichnung sitzen Zuschauer im Studio, die über ein elektronisches Gerät auf verschiedene Fragen mit Ja oder Nein antworten und wobei das Ergebnis (die Ja-Antworten) in vollen Prozent auf einem Bildschirm erscheint und wobei ab nach oben gerundet wird.
a) Erstelle eine Formel mit Hilfe der Gaußklammer , die bei gegebenem aus die Prozentzahl berechnet.
b) Für welche ist die Prozentabbildung aus a) injektiv und für welche surjektiv?
c) Es sei . Welche Prozentzahl tritt nie auf dem Bildschirm auf?
d) Es sei . Hinter welcher Prozentzahl können sich unterschiedlich viele Ja-Stimmen verbergen?
e) Es sei . Hinter welchen Prozentzahlen können sich unterschiedlich viele Ja-Stimmen verbergen?