Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil II/Arbeitsblatt 47/latex

\setcounter{section}{47}






\zwischenueberschrift{Die Pausenaufgabe}




\inputaufgabe
{}
{

Heinz Ngolo und Mustafa Müller sagen abwechselnd reelle Zahlen auf. Dabei sind die Zahlen von Heinz alle positiv und fallen, die Zahlen von Mustafa sind negativ und wachsen. Es sei
\mathl{{ \left( x_n \right) }_{n \in \N }}{} die dadurch gegebene Folge. \aufzaehlungzwei {Kann ${ \left( x_n \right) }_{n \in \N }$ gegen eine von $0$ verschiedene Zahl \definitionsverweis {konvergieren}{}{?} } {Muss ${ \left( x_n \right) }_{n \in \N }$ gegen $0$ konvergieren? }

}
{} {}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Zeige, dass der einzige \definitionsverweis {Körperisomorphismus}{}{} \maabbdisp {\varphi} {\R} {\R } {} die \definitionsverweis {Identität}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} $R$ ein \definitionsverweis {Ring}{}{} mit
\mavergleichskette
{\vergleichskette
{ 0 }
{ \neq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und \maabbdisp {\varphi} {K} {R } {} ein \definitionsverweis {Ringhomomorphismus}{}{.} Zeige, dass $\varphi$ injektiv ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ u }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ v }
{ \in }{ \Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} \aufzaehlungzwei {Zeige, dass $u$ genau dann \definitionsverweis {irrational}{}{} ist, wenn
\mathl{u+v}{} irrational ist. } {Es sei zusätzlich
\mavergleichskette
{\vergleichskette
{v }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass $u$ genau dann \definitionsverweis {irrational}{}{} ist, wenn
\mathl{u \cdot v}{} irrational ist. }

}
{} {}




\inputaufgabegibtloesung
{}
{


a) Man gebe ein Beispiel für rationale Zahlen
\mavergleichskette
{\vergleichskette
{ a,b,c }
{ \in }{ {]0,1[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskettedisp
{\vergleichskette
{ a^2+b^2 }
{ =} { c^2 }
{ } { }
{ } { }
{ } { }
} {}{}{.}


b) Man gebe ein Beispiel für rationale Zahlen
\mavergleichskette
{\vergleichskette
{ a,b,c }
{ \in }{ {]0,1[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskettedisp
{\vergleichskette
{ a^2+b^2 }
{ \neq} { c^2 }
{ } { }
{ } { }
{ } { }
} {}{}{.}


c) Man gebe ein Beispiel für irrationale Zahlen
\mavergleichskette
{\vergleichskette
{ a,b }
{ \in }{ {]0,1[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und eine rationale Zahl
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ {]0,1[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskettedisp
{\vergleichskette
{ a^2+b^2 }
{ =} { c^2 }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Zeige, dass es keinen \definitionsverweis {Gruppenhomomorphismus}{}{} \maabbdisp {\varphi} {(\R,0,+)} {G } {} in eine Gruppe $G$ mit der Eigenschaft gibt, dass
\mavergleichskette
{\vergleichskette
{ r }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} genau dann \definitionsverweis {irrational}{}{} ist, wenn
\mavergleichskette
{\vergleichskette
{ \varphi(r) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ u }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {irrationale Zahl}{}{} und sei
\mavergleichskettedisp
{\vergleichskette
{G }
{ =} { { \left\{ a+bu \mid a,b \in \Z \right\} } }
{ \subseteq} {\R }
{ } { }
{ } { }
} {}{}{.}

a) Zeige, dass $G$ eine \definitionsverweis {Untergruppe}{}{} von
\mathl{(\R,0,+)}{} ist.


b) Zeige, dass es kein Element
\mavergleichskette
{\vergleichskette
{ v }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskettedisp
{\vergleichskette
{G }
{ =} { \Z v }
{ =} { { \left\{ cv \mid c \in \Z \right\} } }
{ } { }
{ } { }
} {}{}{} gibt.


c) Zeige, dass es in $G$ kein positives minimales Element gibt.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine Folge in $K$. Wir definieren zwei Folgen mit den Anfangswerten
\mavergleichskette
{\vergleichskette
{y_0 }
{ = }{x_0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{z_0 }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} rekursiv durch
\mavergleichskettedisp
{\vergleichskette
{y_{n+1} }
{ =} { \begin{cases} y_n +x_{n+1} -x_n , \text{ falls } x_{n+1} \geq x_n \, , \\ y_n \text{ sonst} \, ,\end{cases} }
{ } { }
{ } { }
{ } { }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{ z_{n+1} }
{ =} { \begin{cases} z_n +x_{n+1} -x_n , \text{ falls } x_{n+1} <x_n \, , \\ z_n \text{ sonst} \, .\end{cases} }
{ } { }
{ } { }
{ } { }
} {}{}{} \aufzaehlungdrei{Zeige, dass
\mathl{{ \left( y_n \right) }_{n \in \N }}{} \definitionsverweis {wachsend}{}{} ist. }{Zeige, dass
\mathl{{ \left( z_n \right) }_{n \in \N }}{} \definitionsverweis {fallend}{}{} ist. }{Zeige
\mavergleichskettedisp
{\vergleichskette
{x_n }
{ =} { y_n +z_n }
{ } { }
{ } { }
{ } { }
} {}{}{.} Man kann also jede Folge als Summe einer wachsenden und einer fallenden Folge darstellen. }

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{.} Zeige, dass man die alternierende Folge
\mathl{(-1)^n}{} nicht als Summe
\mavergleichskettedisp
{\vergleichskette
{(-1)^n }
{ =} { y_n +z_n }
{ } { }
{ } { }
{ } { }
} {}{}{} schreiben kann, wenn
\mathl{{ \left( y_n \right) }_{n \in \N }}{} und
\mathl{{ \left( z_n \right) }_{n \in \N }}{} beschränkte und monotone Folgen sind.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zu einem Startwert
\mavergleichskette
{\vergleichskette
{ x_0 }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sei eine reelle Folge rekursiv durch
\mavergleichskettedisp
{\vergleichskette
{ x_{n+1} }
{ =} { { \frac{ x_n+a }{ 2 } } }
{ } { }
{ } { }
{ } { }
} {}{}{} definiert. Zeige die folgenden Aussagen.

(a) Bei
\mavergleichskette
{\vergleichskette
{ x_0 }
{ > }{a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{ x_n }
{ > }{ a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und die Folge ist streng fallend.

(b) Bei
\mavergleichskette
{\vergleichskette
{ x_0 }
{ = }{ a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist die Folge konstant.

(c) Bei
\mavergleichskette
{\vergleichskette
{ x_0 }
{ < }{a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{ x_n }
{ < }{ a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und die Folge ist streng wachsend.

(d) Die Folge konvergiert.

(e) Der Grenzwert ist $a$.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {archimedisch angeordneter Körper}{}{} mit der Eigenschaft, dass jede \definitionsverweis {wachsende}{}{,} nach oben \definitionsverweis {beschränkte}{}{} Folge in $K$ \definitionsverweis {konvergiert}{}{.} Zeige, dass $K$ \definitionsverweis {vollständig}{}{} ist.

}
{} {}


Die Folge der \definitionswort {Fibonacci-Zahlen}{} $f_n$ ist rekursiv definiert durch
\mathdisp {f_1 \defeq 1 \, , f_2 \defeq 1 \text{ und } f_{n+2} \defeq f_{n+1} +f_{n}} { . }





\inputaufgabe
{}
{

Es sei ${ \left( f_n \right) }_{n \in \N }$ die Folge der \definitionsverweis {Fibonacci-Zahlen}{}{} und
\mavergleichskettedisp
{\vergleichskette
{ x_n }
{ =} { { \frac{ f_n }{ f_{n-1} } } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass diese Folge in $\R$ \definitionsverweis {konvergiert}{}{} und dass der Grenzwert $x$ die Bedingung
\mavergleichskettedisp
{\vergleichskette
{x }
{ =} {1 + x^{-1} }
{ } { }
{ } { }
{ } { }
} {}{}{} erfüllt. Berechne daraus $x$.

}
{} {}




\inputaufgabe
{}
{

Beweise durch Induktion die \stichwort {Binet-Formel} {} für die \definitionsverweis {Fibonacci-Zahlen}{}{.} Diese besagt, dass
\mavergleichskettedisp
{\vergleichskette
{ f_n }
{ =} { \frac{ { \left( \frac{1+\sqrt{5} }{2} \right) }^n - { \left( \frac{1-\sqrt{5} }{2} \right) }^n}{\sqrt{5} } }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt \zusatzklammer {
\mavergleichskettek
{\vergleichskettek
{ n }
{ \geq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {.}

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{a }
{ \in }{ \R_{\geq 0} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{k }
{ \in }{ \N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass zu einem beliebigen Startwert
\mavergleichskette
{\vergleichskette
{x_0 }
{ \in }{ \R_{+} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} durch
\mavergleichskettedisp
{\vergleichskette
{ x_{n+1} }
{ \defeq} { { \frac{ (k-1)x_n + { \frac{ a }{ x_n^{k-1} } } }{ k } } }
{ } { }
{ } { }
{ } { }
} {}{}{} eine Folge definiert wird, die gegen $\sqrt[k]{a}$ konvergiert.

}
{} {}




\inputaufgabe
{}
{

Entscheide, ob die \definitionsverweis {Folge}{}{}
\mathdisp {a_n =\sqrt{ { \frac{ 2 \sqrt{n} -3 }{ 3 \sqrt{n} -2 } } }} { }
\definitionsverweis {konvergiert}{}{,} und bestimme gegebenenfalls den \definitionsverweis {Grenzwert}{}{.}

}
{} {}




\inputaufgabe
{}
{

Bestimme die \definitionsverweis {rationale Zahl}{}{,} die im Dezimalsystem durch
\mathdisp {0,11 \overline{05}} { }
gegeben ist.

}
{} {}




\inputaufgabe
{}
{

Bestimme die Ziffernentwicklung im Dualsystem derjenigen reellen Zahl, die im Dezimalsystem durch
\mathl{0{,}\overline{3}}{} gegeben ist.

}
{} {}




\inputaufgabe
{}
{

Bestimme die Ziffernentwicklung im Dreiersystem derjenigen reellen Zahl, die im Dezimalsystem durch
\mathl{0{,}\overline{17}}{} gegeben ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mathl{m \in \N_+}{} und sei
\mavergleichskettedisp
{\vergleichskette
{x }
{ =} {0, \overline{0 \ldots 0 1} }
{ } { }
{ } { }
{ } { }
} {}{}{} die reelle Zahl mit Periodenlänge $m$ \zusatzklammer {die Periode besteht aus
\mathl{m-1}{} Nullen und einer $1$} {} {.} Sei
\mavergleichskettedisp
{\vergleichskette
{y }
{ =} { \sum_{i = 0}^{m-1} z_i 10^{i} }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mathl{z_i \in \{0,1,2 , \ldots , 9\}}{.} Zeige
\mavergleichskettedisp
{\vergleichskette
{xy }
{ =} { 0, \overline{z_{m-1} z_{m-2} \ldots z_1 z_0} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {B-bronze.svg} }
\end{center}
\bildtext {} }

\bildlizenz { 龜-bronze.svg } {} {} {Commons} {} {}




\inputaufgabe
{}
{

Die Situation im Schildkröten-Paradoxon von Zenon von Elea ist folgendermaßen: Eine langsame Schildkröte \zusatzklammer {mit der Kriechgeschwindigkeit
\mavergleichskette
{\vergleichskette
{ v }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} hat einen Vorsprung
\mavergleichskette
{\vergleichskette
{ s }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gegenüber dem schnelleren Achilles \zusatzklammer {mit der Geschwindigkeit
\mavergleichskette
{\vergleichskette
{ w }
{ > }{ v }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und dem Startpunkt $0$} {} {.} Sie starten gleichzeitig. Achilles kann die Schildkröte nicht einholen: Wenn er beim Ausgangspunkt der Schildkröte
\mavergleichskette
{\vergleichskette
{ s_0 }
{ = }{ s }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ankommt, so ist die Schildkröte nicht mehr dort, sondern ein Stück weiter, sagen wir an der Stelle
\mavergleichskette
{\vergleichskette
{ s_1 }
{ > }{ s_0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Wenn Achilles an der Stelle $s_1$ ankommt, so ist die Schildkröte wieder ein Stück weiter, an der Stelle
\mavergleichskette
{\vergleichskette
{ s_2 }
{ > }{ s_1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} u.s.w.

Berechne die Folgenglieder $s_n$, die zugehörigen Zeitpunkte $t_n$, sowie die jeweiligen Grenzwerte. Vergleiche diese Grenzwerte mit den direkt berechneten Überholungsdaten.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ k }
{ \geq }{ 2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass die \definitionsverweis {Reihe}{}{}
\mathdisp {\sum_{n=1}^\infty { \frac{ 1 }{ n^k } }} { }
\definitionsverweis {konvergiert}{}{.}

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die Folge
\mathl{(a_n)_{n \in \N}}{} mit
\mavergleichskette
{\vergleichskette
{ a_n }
{ = }{ { \frac{ 1 }{ n+1 } } + \cdots + { \frac{ 1 }{ 2n } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} konvergiert.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {archimedisch angeordneter Körper}{}{} mit der Eigenschaft, dass jede \definitionsverweis {Dezimalbruchfolge}{}{} in $K$ \definitionsverweis {konvergiert}{}{.} Zeige, dass $K$ \definitionsverweis {vollständig}{}{} ist.

}
{} {}







\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{4}
{

Die Teilmenge
\mavergleichskettedisp
{\vergleichskette
{S }
{ =} { \Q + \Q \sqrt{3} }
{ =} { { \left\{ x+y \sqrt{3} \mid x,y \in \Q \right\} } }
{ \subseteq} { \R }
{ } { }
} {}{}{} ist ein \definitionsverweis {Körper}{}{.} Zeige, dass es einen von der Identität verschiedenen bijektiven \definitionsverweis {Ringhomomorphismus}{}{} \maabbdisp {\varphi} {S} {S } {} gibt.

}
{} {}




\inputaufgabe
{3}
{

Bestimme den \definitionsverweis {Grenzwert}{}{} der durch
\mathdisp {x_n = { \frac{ 2n+5 \sqrt{n} +7 }{ -5 n+3 \sqrt{n} -4 } }} { }
definierten \definitionsverweis {reellen Folge}{}{.}

}
{} {}




\inputaufgabe
{6}
{

Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine \definitionsverweis {Cauchy-Folge}{}{} in $K$. Zeige, dass man im Allgemeinen nicht
\mavergleichskettedisp
{\vergleichskette
{ x_n }
{ =} { y_n +z_n }
{ } { }
{ } { }
{ } { }
} {}{}{} mit einer wachsenden Cauchy-Folge
\mathl{{ \left( y_n \right) }_{n \in \N }}{} und einer fallenden Cauchy-Folge
\mathl{{ \left( z_n \right) }_{n \in \N }}{} schreiben kann.

}
{} {}




\inputaufgabe
{4}
{

Es sei
\mavergleichskette
{\vergleichskette
{x_n }
{ \in }{\R_{\geq 0} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {konvergente Folge}{}{} mit dem Grenzwert $x$. Zeige, dass die Folge
\mathl{\sqrt{x_n}}{} gegen
\mathl{\sqrt{x}}{} konvergiert.

}
{} {}




\inputaufgabe
{3}
{

Bestimme die \definitionsverweis {rationale Zahl}{}{,} die im Dezimalsystem durch
\mathdisp {0,23 \overline{4707}} { }
gegeben ist.

}
{} {}


<< | Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)