Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil I/Arbeitsblatt 1/latex
\setcounter{section}{1}
\zwischenueberschrift{Die Pausenaufgabe}
\inputaufgabe
{}
{
Skizziere ein Mengendiagramm, das zu vier Mengen alle möglichen Schnittmengen darstellt.
}
{} {}
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Venn_diagram_coloured.svg} }
\end{center}
\bildtext {Ein abstraktes und} }
\bildlizenz { Venn_diagram_coloured.svg } {} {Ring0} {Commons} {gemeinfrei} {}
\zwischenueberschrift{Übungsaufgaben}
\inputaufgabe
{}
{
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Venn_diagram_gr_la_ru.svg} }
\end{center}
\bildtext {ein konkretes Mengendiagramm.} }
\bildlizenz { Venn_diagram_gr_la_ru.svg } {} {Watchduck} {Commons} {gemeinfrei} {}
Es sei $LA$ die Menge der Großbuchstaben des lateinischen Alphabets, $GA$ die Menge der Großbuchstaben des griechischen Alphabets und $RA$ die Menge der Großbuchstaben des russischen Alphabets. Bestimme die folgenden Mengen.
\aufzaehlungfuenf{
\mathl{GA \setminus RA}{.}
}{
\mathl{{ \left( LA \cap GA \right) } \cup { \left( LA \cap RA \right) }}{.}
}{
\mathl{RA \setminus { \left( GA \cup RA \right) }}{.}
}{
\mathl{RA \setminus { \left( GA \cup LA \right) }}{.}
}{
\mathl{{ \left( RA \setminus GA \right) } \cap { \left( { \left( LA \cup GA \right) } \setminus { \left( GA \cap RA \right) } \right) }}{.}
}
}
{} {}
\inputaufgabe
{}
{
Bestimme für die Mengen
\mathdisp {M=\{a,b,c,d,e\},\, N=\{a,c,e\},\, P=\{b\},\, R = \{b,d,e,f\}} { }
die Mengen
\aufzaehlungacht{
\mathl{M \cap N}{,}
}{
\mathl{M \cap N \cap P \cap R}{,}
}{
\mathl{M \cup R}{,}
}{
\mathl{{ \left( N \cup P \right) } \cap R}{,}
}{
\mathl{N \setminus R}{,}
}{
\mathl{{ \left( M \cup P \right) } \setminus { \left( R \setminus N \right) }}{,}
}{
\mathl{{ \left( { \left( P \cup R \right) } \cap N \right) } \cap R}{,}
}{
\mathl{{ \left( R \setminus P \right) } \cap { \left( M \setminus N \right) }}{.}
}
}
{} {}
\inputaufgabe
{}
{
Skizziere die folgenden Teilmengen im $\R^2$. \aufzaehlungzweireihe {\itemfuenf {${ \left\{ (x,y) \mid x=5 \right\} }$, }{${ \left\{ (x,y) \mid x \geq 4 \text{ und } y =3 \right\} }$, }{${ \left\{ (x,y) \mid y^2 \geq 2 \right\} }$, }{${ \left\{ (x,y) \mid \betrag { x } = 3 \text{ und } \betrag { y } \leq 2 \right\} }$, }{${ \left\{ (x,y) \mid 3x \geq y \text{ und } 5x \leq 2y \right\} }$, } } {\itemfuenf {${ \left\{ (x,y) \mid xy = 0 \right\} }$, }{${ \left\{ (x,y) \mid xy = 1 \right\} }$, }{${ \left\{ (x,y) \mid xy \geq 1 \text{ und } y \geq x^3 \right\} }$, }{${ \left\{ (x,y) \mid 0 = 0 \right\} }$, }{${ \left\{ (x,y) \mid 0 = 1 \right\} }$. } }
}
{Welche geometrische Gestalt haben die Mengen, in deren Beschreibung nur eine \zusatzklammer {oder gar keine} {} {}
Variable vorkommt?} {}
\inputaufgabegibtloesung
{}
{
Es seien
$A,\, B$ und $C$
Mengen. Beweise die Identität
\mavergleichskettedisp
{\vergleichskette
{A \setminus { \left( B \cap C \right) }
}
{ =} { { \left( A \setminus B \right) } \cup { \left( A \setminus C \right) }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{}
{
Es seien
$A,\, B$ und $C$
Mengen. Man beweise die folgenden Identitäten.
\aufzaehlungneun{
\mavergleichskettedisp
{\vergleichskette
{ A \cup \emptyset
}
{ =} { A
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \cap \emptyset
}
{ =} { \emptyset
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{A \cap B
}
{ =} { B \cap A
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{A \cup B
}
{ =} { B \cup A
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \cap (B \cap C)
}
{ =} { (A \cap B) \cap C
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \cup (B \cup C)
}
{ =} { (A \cup B) \cup C
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \cap (B \cup C)
}
{ =} { (A \cap B) \cup (A \cap C)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \cup (B \cap C)
}
{ =} { (A \cup B) \cap (A \cup C)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \setminus (B \cup C)
}
{ =} { (A \setminus B) \cap (A \setminus C)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
}
{} {}
\inputaufgabe
{}
{
Es seien
\mathkor {} {M} {und} {N} {}
\definitionsverweis {disjunkte Mengen}{}{}
und
\mavergleichskette
{\vergleichskette
{ x
}
{ \in }{ M
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass auch
\mathkor {} {M \setminus \{x\}} {und} {N \cup \{ x\}} {}
disjunkt sind und dass
\mavergleichskettedisp
{\vergleichskette
{M \cup N
}
{ =} { { \left( M \setminus \{x\} \right) } \cup { \left( N \cup \{ x\} \right) }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gilt.
}
{} {}
\inputaufgabe
{}
{
\aufzaehlungzwei {Skizziere die Menge
\mavergleichskette
{\vergleichskette
{ M
}
{ = }{ { \left\{ (x,y) \in \R^ 2 \mid 4x-7y = 3 \right\} }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und die Menge
\mavergleichskette
{\vergleichskette
{ N
}
{ = }{ { \left\{ (x,y) \in \R^ 2 \mid 3x+2y = 5 \right\} }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
} {Bestimme den Durchschnitt
\mathl{M \cap N}{} zeichnerisch und rechnerisch.
}
}
{} {}
\inputaufgabe
{}
{
Wir betrachten die beiden Mengen
\mavergleichskettedisp
{\vergleichskette
{E
}
{ =} { { \left\{ \begin{pmatrix} x \\y\\ z \end{pmatrix} \in \R^3 \mid -3x+2y-6z = 0 \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und
\mavergleichskettedisp
{\vergleichskette
{F
}
{ =} { { \left\{ \begin{pmatrix} x \\y\\ z \end{pmatrix} \in \R^3 \mid 7x-5y-4 z = 0 \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Finde eine Beschreibung für den Durchschnitt
\mavergleichskettedisp
{\vergleichskette
{G
}
{ \defeq} {E \cap F
}
{ =} { { \left\{ \begin{pmatrix} x \\y\\ z \end{pmatrix} \in \R^3 \mid -3x+2y-6z = 0 \text{ und } 7x-5y-4 z = 0 \right\} }
}
{ } {
}
{ } {
}
}
{}{}{}
wie in
Beispiel *****.
}
{} {}
\inputaufgabe
{}
{
\aufzaehlungzwei {Zeige, dass die Menge
\mathdisp {{ \left\{ (x,y) \in \Z^ 2 \mid 3x+5y = 1 \right\} }} { }
nicht leer ist.
} {Zeige, dass die Menge
\mathdisp {{ \left\{ (x,y) \in \Z^ 2 \mid 6x+9y = 5 \right\} }} { }
leer ist.
}
}
{} {}
\inputaufgabe
{}
{
Beschreibe für je zwei \zusatzklammer {einschließlich dem Fall, dass das Produkt mit sich selbst genommen wird} {} {} der folgenden geometrischen Mengen ihre Produktmenge. \aufzaehlungvier{Eine Kreislinie $K$. }{Ein Geradenstück $I$. }{Eine Gerade $G$. }{Eine Parabel $P$. } Welche Produktmengen lassen sich als eine Teilmenge im Raum realisieren, welche nicht?
}
{} {}
\inputaufgabegibtloesung
{}
{
Es seien
\mathkor {} {M} {und} {N} {}
Mengen und seien
\mavergleichskette
{\vergleichskette
{ A
}
{ \subseteq }{ M
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ B
}
{ \subseteq }{ N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
Teilmengen. Zeige die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ { \left( A \times N \right) } \cap { \left( M \times B \right) }
}
{ =} { A \times B
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{}
{
Es seien
\mathkor {} {A} {und} {B} {}
\definitionsverweis {disjunkte Mengen}{}{}
und $C$ eine weitere Menge. Zeige die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ C \times (A \uplus B)
}
{ =} { ( C \times A) \uplus ( C \times B )
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{}
{
Es seien
\mathkor {} {A} {und} {B} {}
\definitionsverweis {disjunkte Mengen}{}{.}
Zeige die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{(A \uplus B) \times (A \uplus B)
}
{ =} {( A \times A) \uplus ( A \times B) \uplus (B \times A) \uplus (B \times B)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{2}
{
Skizziere die folgenden Teilmengen im $\R^2$. \aufzaehlungvier{${ \left\{ (x,y) \mid \betrag { 2x } = 5 \text{ und } \betrag { y } \geq 3 \right\} }$, }{${ \left\{ (x,y) \mid -3x \geq 2y \text{ und } 4x \leq -5y \right\} }$, }{${ \left\{ (x,y) \mid y^2-y+1 \leq 4 \right\} }$, }{${ \left\{ (x,y) \mid xy = 2 \text{ oder } x^2+y^2 = 1 \right\} }$. }
}
{} {}
\inputaufgabe
{2 (1+1)}
{
\aufzaehlungzwei {Skizziere die Menge
\mavergleichskette
{\vergleichskette
{ M
}
{ = }{ { \left\{ (x,y) \in \R^2 \mid -5x+2y = 6 \right\} }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und die Menge
\mavergleichskette
{\vergleichskette
{ N
}
{ = }{ { \left\{ (x,y) \in \R^ 2 \mid 7x-5y = 4 \right\} }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
} {Bestimme den Durchschnitt
\mathl{M \cap N}{} zeichnerisch und rechnerisch.
}
}
{} {}
\inputaufgabe
{1}
{
Gilt für die Vereinigung von Mengen die \anfuehrung{Abziehregel}{,} d.h. kann man aus
\mavergleichskette
{\vergleichskette
{A \cup C
}
{ = }{B \cup C
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
auf
\mavergleichskette
{\vergleichskette
{A
}
{ = }{B
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
schließen?
}
{} {}
\inputaufgabe
{5}
{
Beweise die mengentheoretischen Fassungen einiger aristotelischer Syllogismen. Dabei bezeichnen $A,B,C$ Mengen.
\aufzaehlungfuenf{Modus Barbara: Aus
\mavergleichskette
{\vergleichskette
{ B
}
{ \subseteq }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ C
}
{ \subseteq }{ B
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ C
}
{ \subseteq }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Modus Celarent: Aus
\mavergleichskette
{\vergleichskette
{ B \cap A
}
{ = }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ C
}
{ \subseteq }{ B
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ C \cap A
}
{ = }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Modus Darii: Aus
\mavergleichskette
{\vergleichskette
{ B
}
{ \subseteq }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ C \cap B
}
{ \neq }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ C \cap A
}
{ \neq }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Modus Ferio: Aus
\mavergleichskette
{\vergleichskette
{ B \cap A
}
{ = }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ C \cap B
}
{ \neq }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ C
}
{ \not \subseteq }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Modus Baroco: Aus
\mavergleichskette
{\vergleichskette
{ B
}
{ \subseteq }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ B
}
{ \not \subseteq }{ C
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ A
}
{ \not \subseteq }{ C
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
}
{} {}
\inputaufgabe
{2}
{
Es seien
\mathkor {} {M} {und} {N} {}
Mengen und seien
\mavergleichskette
{\vergleichskette
{ A_1,A_2
}
{ \subseteq }{ M
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ B_1,B_2
}
{ \subseteq }{ N
}
{ }{
}
{ }{}
{ }{}
}
{}{}{}
Teilmengen. Zeige die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ { \left( A_1 \times B_1 \right) } \cap { \left( A_2 \times B_2 \right) }
}
{ =} { { \left( A_1 \cap A_2 \right) } \times { \left( B_1 \cap B_2 \right) }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{4}
{
Es seien
\mathkor {} {A} {und} {B} {}
Mengen. Zeige, dass die folgenden Aussagen zueinander äquivalent sind.
\aufzaehlungsechs{
\mavergleichskette
{\vergleichskette
{ A
}
{ \subseteq }{B
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
}{
\mavergleichskette
{\vergleichskette
{ A \cap B
}
{ = }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
}{
\mavergleichskette
{\vergleichskette
{ A \cup B
}
{ = }{ B
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
}{
\mavergleichskette
{\vergleichskette
{ A \setminus B
}
{ = }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
}{Es gibt eine Menge $C$ mit
\mavergleichskette
{\vergleichskette
{ B
}
{ = }{ A \cup C
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
}{Es gibt eine Menge $D$ mit
\mavergleichskette
{\vergleichskette
{ A
}
{ = }{ B \cap D
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
}
{} {}
Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil I | >> |
---|