Kurs:Mathematik (Osnabrück 2009-2011)/Teil II/Arbeitsblatt 40/latex

\setcounter{section}{40}






\zwischenueberschrift{Aufwärmaufgaben}




\inputaufgabe
{}
{

Bestimme die \definitionsverweis {Ableitung}{}{} der Kurve \maabbeledisp {f} {\R} {\R^3 } {t} {f(t) = { \left( t^2- \sin t, e^{-t}+2t^3, t \cdot \sinh t + { \frac{ 1 }{ t^2+1 } } \right) } } {,} in jedem Punkt
\mathl{t \in \R}{.}

}
{} {}




\inputaufgabe
{}
{

Skizziere die \definitionsverweis {Bilder}{}{} und die \definitionsverweis {Graphen}{}{} der folgenden \definitionsverweis {Kurven}{}{} im
\mathl{\R^2}{.} \aufzaehlungfuenf{
\mathl{t \longmapsto { \left( t^2,t^2 \right) }}{,} }{
\mathl{t \longmapsto { \left( t^2,-t^2 \right) }}{,} }{
\mathl{t \longmapsto { \left( t^2,t \right) }}{,} }{
\mathl{t \longmapsto { \left( 2t,3t \right) }}{,} }{
\mathl{t \longmapsto { \left( t^2,t^3 \right) }}{.} }

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {euklidischer Vektorraum}{}{} und
\mavergleichskette
{\vergleichskette
{ v,w }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass die Abbildung \maabbeledisp {f} {\R} {V } {t} {tv+w } {,} \definitionsverweis {differenzierbar}{}{} ist mit der \definitionsverweis {Ableitung}{}{}
\mavergleichskette
{\vergleichskette
{ f'(t) }
{ = }{ v }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei $I$ ein reelles Intervall und $V$ ein \definitionsverweis {euklidischer Vektorraum}{}{.} Es seien \maabbdisp {f,g} {I} {V } {} zwei in
\mavergleichskette
{\vergleichskette
{ t_0 }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {differenzierbare Kurven}{}{} und es sei \maabbdisp {h} {I} {\R } {} eine in $t_0$ \definitionsverweis {differenzierbare Funktion}{}{.} Zeige, dass folgende Aussagen gelten. \aufzaehlungdrei{Die Summe \maabbeledisp {f+g} {I} {V } {t} {f(t)+g(t) } {,} ist in $t_0$ differenzierbar mit
\mavergleichskettedisp
{\vergleichskette
{ (f+g)'(t_0) }
{ =} { f'(t_0) + g'(t_0) }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{Das Produkt \maabbeledisp {hf} {I} {V } {t} { h(t) f(t) } {,} ist differenzierbar in $t_0$ mit
\mavergleichskettedisp
{\vergleichskette
{ (hf)'(t_0) }
{ =} { h(t_0) f'(t_0) + h'(t_0) f(t_0) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Insbesondere ist für
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} auch
\mathl{cf}{} differenzierbar in $t_0$ mit
\mavergleichskettedisp
{\vergleichskette
{ (cf)'(t_0) }
{ =} { c f'(t_0) }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{Wenn $h$ nullstellenfrei ist, so ist auch die Quotientenfunktion \maabbeledisp {{ \frac{ f }{ h } }} { I } {V } {t} {{ \frac{ f(t) }{ h(t) } } } {,} in $t_0$ differenzierbar mit
\mavergleichskettedisp
{\vergleichskette
{ { \left( { \frac{ f }{ h } } \right) }' (t_0) }
{ =} { { \frac{ h(t_0) f'(t_0) - h'(t_0) f(t_0) }{ (h(t_0))^2 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.} }

}
{} {}

Die folgenden Aufgaben wiederholen wichige Eigenschaften von euklidischen Vektorräumen.


\inputaufgabe
{}
{

Man beweise das \stichwort {Schmidtsche Orthonormalisierungsverfahren} {.} Das besagt, dass man in einem \definitionsverweis {euklidischen Vektorraum}{}{} aus einer gegebenen Basis
\mathl{v_1, \ldots, v_n}{} eine \definitionsverweis {Orthonormalbasis}{}{}
\mathl{u_1 , \ldots , u_n}{} basteln kann derart, dass die erzeugten Unterräume
\mavergleichskettedisp
{\vergleichskette
{ \langle v_1 , \ldots , v_i \rangle }
{ =} {\langle u_1 , \ldots , u_i \rangle }
{ } { }
{ } { }
{ } { }
} {}{}{} übereinstimmen für alle $i=1 , \ldots , n$.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {Vektorraum}{}{} über $\R$ mit einem \definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{} und der zugehörigen \definitionsverweis {Norm}{}{}
\mathl{\Vert {-} \Vert}{.} Zeige, dass die sogenannte \stichwort {Parallelogrammgleichung} {}
\mavergleichskettedisp
{\vergleichskette
{ \Vert {v+w} \Vert ^2 + \Vert {v-w} \Vert ^2 }
{ =} { 2 \Vert {v} \Vert ^2 +2 \Vert {w} \Vert ^2 }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{}
{

Es seien \mathkor {} {(V_1, \left\langle - , - \right\rangle_1 )} {und} {(V_2, \left\langle - , - \right\rangle_2)} {} zwei \definitionsverweis {euklidische Vektorräume}{}{.} Zeige, dass durch
\mathdisp {\left\langle (v_1,v_2) , (w_1,w_2) \right\rangle := \left\langle v_1 , w_1 \right\rangle_1 + \left\langle v_2 , w_2 \right\rangle_2} { }
ein \definitionsverweis {Skalarprodukt}{}{} auf dem \definitionsverweis {Produktraum}{}{}
\mathl{V_1 \times V_2}{} definiert wird.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{(M,d)}{} ein \definitionsverweis {metrischer Raum}{}{,} sei
\mavergleichskette
{\vergleichskette
{ T }
{ \subseteq }{ M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Teilmenge und sei
\mavergleichskette
{\vergleichskette
{a }
{ \in }{ M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {Berührpunkt}{}{} von $T$. Es sei \maabbdisp {f} {T} {V } {} eine \definitionsverweis {Abbildung}{}{} in einen \definitionsverweis {euklidischen Vektorraum}{}{} $V$ mit den \definitionsverweis {Komponentenfunktionen}{}{} \maabbdisp {f_1 , \ldots , f_n} {T} {\R } {} bezüglich einer Basis von $V$. Zeige, dass der \definitionsverweis {Limes}{}{}
\mathdisp {\operatorname{lim}_{ x \rightarrow a } \, f(x)} { }
genau dann existiert, wenn sämtliche Limiten
\mathdisp {\operatorname{lim}_{ x \rightarrow a } \, f_j(x)} { }
existieren.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Cusp.png} }
\end{center}
\bildtext {} }

\bildlizenz { Cusp.png } {} {Satipatthana} {Commons} {PD} {}




\inputaufgabe
{}
{

Das \definitionsverweis {Bild}{}{} der durch \maabbeledisp {} {\R} {\R^2 } {t} {\left( t^2 , \, t^3 \right) } {,} definierten Kurve heißt \stichwort {Neilsche Parabel} {.} Zeige, dass ein Punkt
\mavergleichskette
{\vergleichskette
{(x,y) }
{ \in }{ \R^2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} genau dann zu diesem Bild gehört, wenn er die Gleichung
\mavergleichskette
{\vergleichskette
{x^3 }
{ = }{y^2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} erfüllt.

}
{} {}




\inputaufgabe
{}
{

Wir betrachten die Abbildung \maabbdisp {f} {\R} {S^1 \subseteq \R^2 } {,} die einem Punkt
\mathl{t \in \R}{} den eindeutigen Schnittpunkt
\mathl{\neq (0,-1)}{} der durch die beiden Punkte \mathkor {} {(t,1)} {und} {(0,-1)} {} gegebenen Geraden
\mathl{G_t}{} mit dem \definitionsverweis {Einheitskreis}{}{}
\mavergleichskettedisp
{\vergleichskette
{ S^1 }
{ =} { { \left\{ (x,y) \in \R^2 \mid x^2+y^2 = 1 \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{} zuordnet. Zeige, dass diese Abbildung wohldefiniert ist und bestimme die funktionalen Ausdrücke, die diese Abbildung beschreiben. Zeige, dass $f$ \definitionsverweis {differenzierbar}{}{} ist. Ist $f$ \definitionsverweis {injektiv}{}{,} ist $f$ \definitionsverweis {surjektiv}{}{?}

}
{} {}




\inputaufgabe
{}
{

Für welche Punkte
\mathl{t \in \R}{} ist der Abstand der Bildpunkte der Kurve \maabbeledisp {} {\R} {\R^2 } {t} {(2 \sin t , 3 \cos t ) } {,} zum Nullpunkt
\mathl{(0,0)}{} maximal, für welche minimal?

}
{} {}




\inputaufgabe
{}
{

Betrachte die \definitionsverweis {Kurve}{}{} \maabbeledisp {f} {\R} {\R^3 } {x} {\left( x^2-x , \, x^3+ \sinh x , \, \sin (x^2) \right) } {.}

a) Bestimme die \definitionsverweis {Ableitung}{}{} von $f$ in jedem Punkt $x$.

b) Bestimme die Komponentenfunktionen von $f$ bezüglich der neuen Basis
\mathdisp {(1,0,3),(2,4,6),(1,-1,0)} { }
von $\R^3$.

c) Berechne die Ableitung in der neuen Basis direkt und mit Hilfe von Lemma 40.8.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ P }
{ \in }{ \R^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Punkt und sei
\mavergleichskette
{\vergleichskette
{ I }
{ = }{ {]{-1},1[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Wir betrachten die Menge
\mavergleichskettedisp
{\vergleichskette
{ M }
{ =} { { \left\{ f:I \rightarrow \R^n \mid f \text{ differenzierbar} , \, f(0) = P \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wir nennen zwei \definitionsverweis {Kurven}{}{}
\mavergleichskette
{\vergleichskette
{ f,g }
{ \in }{ M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \stichwort {tangential äquivalent} {,} wenn
\mavergleichskettedisp
{\vergleichskette
{ f'(0) }
{ =} { g'(0) }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

a) Zeige, dass dies eine \definitionsverweis {Äquivalenzrelation}{}{} ist.

b) Finde den einfachsten Vertreter für die \definitionsverweis {Äquivalenzklassen}{}{.}

c) Man gebe für jede Klasse einen weiteren Vertreter an.

d) Beschreibe die Menge der Äquivalenzklassen \zusatzklammer {also die \definitionsverweis {Quotientenmenge}{}{}} {} {.}

}
{} {}



<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)