Kurs:Mathematik (Osnabrück 2009-2011)/Teil III/Arbeitsblatt 74/latex
\setcounter{section}{74}
\zwischenueberschrift{Aufwärmaufgaben}
\inputaufgabe
{}
{
Berechne das
\definitionsverweis {Integral}{}{}
\mathdisp {\int_{ Q } xy \, d \lambda^2} { }
über dem Quader
\mathl{Q=[a,b] \times [c,d]}{.}
}
{} {}
\inputaufgabe
{}
{
Es sei $G$ der
\definitionsverweis {Subgraph}{}{} unterhalb der
\definitionsverweis {Standardparabel}{}{} zwischen
\mathkor {} {1} {und} {3} {.}
Berechne das
\definitionsverweis {Integral}{}{}
\mathdisp {\int_{ G } x^2+xy-y^3 \, d \lambda^2} { . }
}
{} {}
\inputaufgabe
{}
{
Es sei
\mathl{(M, {\mathcal A }, \mu)}{} ein
\definitionsverweis {Maßraum}{}{.} Zeige, dass die Menge der
\definitionsverweis {Nullmengen}{}{} von $M$ ein
\definitionsverweis {Mengen-Präring}{}{} ist.
}
{} {}
\inputaufgabe
{}
{
Es sei
\mathl{(M, {\mathcal A }, \mu)}{} ein
\definitionsverweis {Maßraum}{}{} und es sei
\maabbdisp {g} {M} {\overline{ \R }_{\geq 0}
} {}
eine nichtnegative
\definitionsverweis {messbare Funktion}{}{.}
Zeige, dass die Zuordnung
\maabbeledisp {} { {\mathcal A } } { \overline{ \R }_{\geq 0}
} {T} { \int_{ T } g \, d \mu
} {}
ein
\definitionsverweis {Maß}{}{}
auf $M$ ist.
}
{} {}
\inputaufgabe
{}
{
Welche \definitionsverweis {Dichte}{}{} besitzt das \definitionsverweis {Borel-Lebesgue-Maß}{}{} auf dem $\R^n$ bezüglich des Borel-Lebesgue-Maßes?
}
{} {}
\inputaufgabe
{}
{
Man gebe ein Beispiel für ein
\definitionsverweis {Maß}{}{} auf
\mathl{(\R, {\mathcal B })}{,} das keine
\definitionsverweis {Dichte}{}{} bezüglich des
\definitionsverweis {Borel-Lebesgue-Maß}{}{}es besitzt.
}
{} {}
\inputaufgabe
{}
{
Wir betrachten die Abbildung
\maabbeledisp {\varphi} {\R^2} {\R^2
} {(x,y)} {(x + \sin y ,y + \cos x)
} {.} Berechne das Minimum und das Maximum von
\mathl{\betrag { \det \left(D\varphi\right)_{P} }}{} auf dem Quadrat
\mathl{Q=[0,2 \pi] \times [0,2 \pi ]}{.} Welche Abschätzung ergibt sich daraus für
\mathl{\lambda^2( \varphi(Q))}{?}
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{5}
{
Es sei $G$ der \definitionsverweis {Subgraph}{}{} der \definitionsverweis {Sinusfunktion}{}{} zwischen \mathkor {} {0} {und} {\pi} {.} Berechne die \definitionsverweis {Integrale}{}{}
a)
\mathl{\int_{ G } x \, d \lambda^2}{,}
b)
\mathl{\int_{ G } y \, d \lambda^2}{.}
}
{} {}
\inputaufgabe
{5}
{
Berechne das
\definitionsverweis {Integral}{}{} zur Funktion
\mathl{f(x,y)=x ( \sin x)( \cos \left( xy \right))}{} über dem Rechteck
\mathl{Q= [0,3 \pi] \times [0,1]}{.}
}
{} {}
\inputaufgabe
{6}
{
Wir betrachten die Abbildung
\maabbeledisp {f} {\R^2} {\R
} {(u,v)} { { \frac{ 2uv }{ (u^2+1)(v^2+v+1) } }
} {.}
Für welche Quadrate
\mathl{Q=[a,a+1] \times [b,b+1]}{} der Kantenlänge $1$ wird das
\definitionsverweis {Integral}{}{}
\mathdisp {\int_{ Q } f \, d \lambda^2} { }
maximal? Welchen Wert besitzt es?
}
{} {}
\inputaufgabe
{5}
{
Wir betrachten die Abbildung
\maabbeledisp {\varphi} {\R^2} {\R^2
} {(x,y)} {(x^3-y^2,xy^2)
} {.}
Berechne das Minimum und das Maximum von
\mathl{\betrag { \det \left(D\varphi\right)_{P} }}{} auf den beiden Quadraten
\mathkor {} {Q_1= [0,1] \times[0,1]} {und} {Q_2= [1,2] \times[1,2]} {.}
Welche Abschätzungen ergeben sich daraus für
\mathkor {} {\lambda^2( \varphi(Q_1))} {und für} {\lambda^2( \varphi(Q_2))} {?}
}
{} {}
\inputaufgabe
{6}
{
Wir betrachten das
\definitionsverweis {Bildmaß}{}{}
\mathl{\mu=\varphi_*\lambda^n}{} zur Abbildung
\zusatzklammer {\mathlk{n \geq 1}{}} {} {}
\maabbeledisp {\varphi} {\R^n} {\R
} {(x_1 , \ldots , x_n)} { \sqrt{x_1^2 + \cdots + x_n^2}
} {.}
a) Zeige, dass $\mu$ ein $\sigma$-\definitionsverweis {endliches Maß}{}{} auf $\R$ ist.
b) Zeige, dass $\mu$ bezüglich $\lambda^1$ die
\definitionsverweis {Dichte}{}{}
\mathdisp {h(t)= \begin{cases} 0 , \text{ falls } t < 0 \, , \\ n \beta_n t^{n-1} \text{ falls } t \geq 0 \, , \end{cases}} { }
besitzt, wobei $\beta_n$ das Volumen der $n$-dimensionalen Einheitskugel bezeichnet.
}
{} {}
<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil III | >> |
---|