Kurs:Mathematik für Anwender/Teil I/24/Klausur/kontrolle
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 3 | 2 | 5 | 3 | 3 | 4 | 3 | 6 | 5 | 9 | 3 | 2 | 4 | 3 | 3 | 64 |
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
In einem Hörsaal befindet sich ein Tafelgestell mit drei hintereinander liegenden, vertikal verschiebbaren Tafeln. Diese seien mit (vordere Tafel), (mittlere Tafel) und (hintere Tafel) bezeichnet. Aufgrund der Höhe des Gestells sind nur (maximal) zwei Tafeln gleichzeitig einsehbar. Die Lehrperson schreibt in der Vorlesung jede Tafel genau einmal voll. In welcher Reihenfolge (alle Möglichkeiten!) muss sie die Tafeln einsetzen, wenn beim Beschreiben einer Tafel stets die zuletzt beschriebene Tafel sichtbar sein soll.
Aufgabe * (2 Punkte)Referenznummer erstellen
Die Biologin Hertha McGillen ist eine renommierte Forscherin über fliegende Fische. Zur Beobachtung hat ihr Team eine Drohne entwickelt, die sowohl oberhalb als auch unterhalb des Meeresspiegels fliegen kann. Bei einem Einsatz startet die Drohne vom Ausgangspunkt auf dem Schiff, der vier Meter oberhalb des Meeresspiegels liegt. Sie steigt zunächst drei Meter in die Höhe, fliegt dann elf Meter nach unten, dann einen Meter nach oben, dann zwei Meter nach unten, dann sechs Meter nach oben, dann fünf Meter nach unten, dann drei Meter nach oben, dann vier Meter nach unten, dann reißt der Funkkontakt ab.
Wie hoch bzw. tief ist die Drohne insgesamt von ihrem Ausgangspunkt aus geflogen und auf welcher Höhe unter- oder oberhalb des Meeresspiegels brach der Kontakt ab? Wie oft ist die Drohne ein- und wie oft aufgetaucht?
Aufgabe * (5 Punkte)Referenznummer erstellen
Zeige mittels vollständiger Induktion für die Formel
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (4 Punkte)Referenznummer erstellen
Beweise die Bernoulli-Ungleichung für einen angeordneten Körper.
Aufgabe * (3 Punkte)Referenznummer erstellen
Es seien und verschiedene normierte Polynome vom Grad über einem Körper . Wie viele Schnittpunkte besitzen die beiden Graphen maximal?
Aufgabe * (6 Punkte)Referenznummer erstellen
Beweise den Zwischenwertsatz.
Aufgabe * (5 Punkte)Referenznummer erstellen
Bestimme die lokalen und die globalen Extrema der Funktion
Aufgabe * (9 (1+2+3+3) Punkte)Referenznummer erstellen
In der folgenden Aufgabe sollen Personen in der Ebene so platziert werden, dass je zwei Personen zueinander einen Abstand von zumindest haben (alle Angaben beziehen sich auf Meter). Die Personen bzw. ihre Platzierung sind dabei durch einen Punkt gegeben.
- Zeige, dass man auf einem quadratischen -Platz Leute platzieren kann (Randpunkte sind erlaubt).
- Was ist falsch am folgenden Argument: „Auf einem -Platz kann man höchstens Leute platzieren. Zu jeder Person gehört nämlich ein Umkreis mit Radius , und zu verschiedenen Personen sind diese Kreise zueinander disjunkt. Zu jeder Person gehört also eine Fläche mit Flächeninhalt
.
Diese Flächen liegen ganz in der Gesamtfläche der Größe
.
Wegen
ist dies nicht möglich.“
- Zeige, dass man auf einem -Platz definitiv nicht Leute platzieren kann.
- Zeige, dass man auf einem -Platz Leute platzieren kann.
Aufgabe * (3 Punkte)Referenznummer erstellen
Berechne den Flächeninhalt der Fläche, die durch den Graphen zu und der Geraden durch den Nullpunkt und den Punkt eingeschlossen wird.
Aufgabe * (2 Punkte)Referenznummer erstellen
Berechne über den komplexen Zahlen das Matrizenprodukt
Aufgabe * (4 Punkte)Referenznummer erstellen
Beweise den Satz über die Existenz von Basen in einem endlich erzeugten - Vektorraum .
Aufgabe * (3 Punkte)Referenznummer erstellen
Bestimme die inverse Matrix zu
Aufgabe * (3 Punkte)Referenznummer erstellen
Bestimme, welche der folgenden elementargeometrischen Abbildungen linear, welche diagonalisierbar und welche trigonalisierbar sind.
- Die Achsenspiegelung durch die durch gegebene Achse.
- Die Verschiebung um den Vektor .
- Die Drehung um Grad gegen den Uhrzeigersinn um den Ursprung.
- Die Punktspiegelung mit dem Punkt als Zentrum.