Kurs:Mathematische Modellbildung/Themen/Räuber-Beute-Modelle/Implementation - Uni
Modellierungszyklus 3 - Niveau Uni
BearbeitenAuswahl der Software
BearbeitenZiel: die gegenseitige Beeinflussung zweier Populationen und Regelmäßigkeiten in der Beziehung der Populationen darstellen → Anwendung von Lotka-Volterra-Gleichungen
- Tabellenkalkulation: Diskretisierung Lotka-Volterra (rekursive, schrittweise Berechnung und Plot)
- Maxima: Ableitungsberechnungen, Hessematrix, Eigenwerte (Gleichgewichtszustand als lokales Minimum)
- Octave: Vektorfeld zu gekoppelten Differentialgleichungen, Diskretisierung (Darstellung als Orbit), Höhenlinien
Diskretisierung Lotka-Volterra
BearbeitenFichtenpopulation
- Für die Änderungsrate der Fichtenpopulation wurde sowohl die Vermehrung der Fichten als auch die Schädigung der Fichten durch die Borkenkäfer betrachtet. Es ergibt sich folgender Zusammenhang:
- F'(t): Änderungsrate Fichten
- a: Reproduktionsrate Fichten
- b: Sterberate Fichten pro Borkenkäfer
- F(t): Anzahl Fichten zum Zeitpunkt t
- B(t): Anzahl Borkenkäfer zum Zeitpunkt t
Änderungsrate der Fichten
Bearbeiten- Betrachtung der Vermehrung der Fichten, die sich aus der Multiplikation der Reproduktionsrate mit der aktuellen Fichtenanzahl ergibt.
- Der Subtrahend berücksichtigt, wie tödlich ein Zusammentreffen von Fichte und Borkenkäfer ist. Die getöteten Fichten werden abgezogen.
Borkenkäferpopulation
BearbeitenFür die Änderungsrate der Borkenkäferpopulation wurden sowohl die Sterberate der Borkenkäfer als auch die Reproduktionsrate der Borkenkäfer pro Fichte berücksichtigt. Es ergibt sich folgender Zusammenhang:
- B'(t): Änderungsrate Borkenkäfer
- c: Sterberate Borkenkäfer
- d: Reproduktionsrate Borkenkäfer pro Fichte
- F(t): Anzahl Fichten zum Zeitpunkt t
- B(t): Anzahl Borkenkäfer zum Zeitpunkt t
Änderungsrate der Borkenkäfer
Bearbeiten- Sterberate der Borkenkäfer: Multiplikation der Sterberate mit der aktuellen Borkenkäferanzahl. Da die Population durch Sterbefälle zurückgeht, wird die Konstante c mit einem negativen Vorzeichen versehen.
- zweiter Summand: wie nahrhaft ist ein Zusammentreffen von Fichte und Borkenkäfer und wie wirkt sich dies auf die Reproduktion der Borkenkäfer aus.
- Zusammentreffen von Borkenkäfer und Fichte: Reproduktion der Borkenkäfer steigt → Term hat positiven Einfluss auf die Änderung
Wahl der Parameter
BearbeitenParameter a (Reproduktionsrate Fichten)
Bearbeiten- Eine Fichte braucht im Durchschnitt 30 Jahre, um geschlechtsreif zu werden
- pro Fichte entwickeln sich 10 der Samen auch zu einem neuen Baum
Parameter c (Sterberate der Borkenkäfer)
Bearbeiten- Lebenserwartung eines Borkenkäfers beträgt 2 Jahre
Parameter b und d
Bearbeiten- schwer zu schätzen, deshalb ist eine weitere Annahme für die Berechnung dieser Parameter nötig :
In einem Ökosystem gibt es immer einen Gleichgewichtszustand (genauso viele Individuen sterben wie geboren werden) → keine Änderung der Populationsgröße (Änderungsrate=0)
Annahmen für Gleichgewichtszustand
Bearbeiten- (in Tausend)
- Durch Nullsetzen und Umstellen der Änderungsraten erhält man:
Festlegung der Schrittweite
Bearbeiten- Es wurde eine Schrittweite von 0,1 festgelegt, um möglichst viele Punkte in kleinen Abständen zu erhalten und einen ersten Plot durchführen zu können.
- Dabei ergibt sich:
Aus Zyklus 1 wird weiterhin verwendet:
BearbeitenLotka-Volterra-Gleichung
BearbeitenDie Anzahl der Fichten wurde durch 1 000 geteilt, um beide Graphen in einem Koordinatensystem darstellen zu können.
Vektorfeld und Orbitdarstellung des zyklischen Verlaufs mit Octave
Bearbeiten- Darstellung der Differentialgleichung als Vektorfeld mit Octave
- Hierbei stellen die Vektoren mit ihrem Anteil in x- und y-Richtung die Änderung an dem jeweiligen Punkt dar und der zyklische Verlauf der Populationsentwicklung lässt sich an den sich andeutenden Orbits bereits erkennen.
Vektorfeld
BearbeitenOctave Skript
Bearbeiten
Plot Vektorfeld
Bearbeiten
Darstellung als Orbit
BearbeitenAußerdem lässt sich mit Octave die numerische Lösung für die Situation in RLP als Orbit darstellen:
Octave Skript Orbit
Bearbeiten
Plot Orbit
Bearbeiten
Seiteninformation
BearbeitenDiese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.
Wiki2Reveal
BearbeitenDieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Mathematische_Modellbildung' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.
- Die Seite wurde als Dokumententyp PanDocElectron-SLIDE erstellt.
- Link zur Quelle in Wikiversity: https://de.wikiversity.org/wiki/Kurs:Mathematische_Modellbildung/Themen/R%C3%A4uber-Beute-Modelle/Implementation_-_Uni
- siehe auch weitere Informationen zu Wiki2Reveal und unter Wiki2Reveal-Linkgenerator.