Lineare Abbildung/Festlegung auf Basis/Fakt/Beweis/Aufgabe/Lösung


Da sein soll und eine lineare Abbildung für jede Linearkombination die Eigenschaft

erfüllt, und jeder Vektor sich als eine solche Linearkombination schreiben lässt, kann es maximal nur eine solche lineare Abbildung geben.
Wir definieren nun umgekehrt eine Abbildung

indem wir jeden Vektor mit der gegebenen Basis als

schreiben (wobei für fast alle ist) und

ansetzen. Da die Darstellung von als eine solche Linearkombination eindeutig ist, ist diese Abbildung wohldefiniert. Die Eigenschaft ist dabei klar.
Zur Linearität. Für zwei Vektoren und gilt


Die Verträglichkeit mit der skalaren Multiplikation ergibt sich ähnlich, siehe

Aufgabe.