Lineares Gleichungssystem/Lösungsverfahren/Verschiedene Bemerkungen/Textabschnitt
Gelegentlich möchte man ein simultanes lineares Gleichungssystem der Form
lösen. Es sollen also für verschiedene Störvektoren Lösungen des zugehörigen inhomogenen Gleichungssystems berechnet werden. Grundsätzlich könnte man dies als voneinander unabhängige Gleichungssysteme betrachten, es ist aber geschickter, die Umwandlungen, die man auf der linken Seite macht, um Dreiecksgestalt zu erreichen, simultan auf der rechten Seiten mit allen Störvektoren durchzuführen. Ein wichtiger Spezialfall bei liegt vor, wenn die Störvektoren die Standardvektoren durchlaufen, siehe Fakt.
Wir besprechen noch kurz weitere Verfahren, ein lineares Gleichungssystem zu lösen.
Ein weiteres Verfahren, ein lineares Gleichungssystem zu lösen, ist das Einsetzungsverfahren. Dabei werden ebenfalls Variablen sukzessive eliminiert, allerdings in einer anderen Weise. Wenn man mit diesem Verfahren die Variable eliminieren möchte, so löst man eine Gleichung, sagen wir , in der mit einem von verschiedenen Koeffizienten vorkommt, nach auf, und erhält eine neue Gleichung der Form
wobei in die Variable nicht vorkommt. In allen weiteren Gleichungen ersetzt man die Variable durch und erhält (nach Umformungen) ein Gleichungssystem ohne die Variable , das zusammen mit äquivalent zum Ausgangssystem ist.
Ein anderes Verfahren, ein lineares Gleichungssystem zu lösen, ist das Gleichsetzungsverfahren. Dabei werden ebenfalls Variablen sukzessive eliminiert, allerdings in anderer Weise. Bei diesem Verfahren löst man die Gleichungen , , nach einer festen Variablen, sagen wir auf. Es seien (nach Umordnung) die Gleichungen, in denen die Variable mit einem von verschiedenen Koeffizienten vorkommt. Diese Gleichungen bringt man in die Form
wobei in die Variable nicht vorkommt. Das Gleichungssystem bestehend aus
ist zum gegebenen System äquivalent. Mit diesem System ohne fährt man fort.
Die in Fakt, Bemerkung und Bemerkung beschriebenen Verfahren zur Lösung eines linearen Gleichungssystems unterscheiden sich hinsichtlich Schnelligkeit, strategischer Konzeption, Systematik, Fehleranfälligkeit. Beim Eliminationsverfahren tritt die systematische Reduzierung der Variablenanzahl (Dimensionsreduktion) besonders deutlich hervor und man kann mit ihm eigentlich keine Fehler (außer Rechenfehler) machen und weiß immer, wie es weiter geht. Allerdings treten diese Vorteile erst ab zumindest drei Variablen hervor. Bei zwei Variablen ist es nahezu egal, welchen Weg man wählt.
Die Bewertung der Verfahren hängt auch wesentlich von konkreten Besonderheiten des vorliegenden Systems ab. Solche Besonderheiten muss man berücksichtigen, um „Abkürzungen“ auf dem Weg zur Lösung zu sehen. Die bewusste Wahl eines für das konkrete Problem angemessenen Lösungsweges nennt man Adaptivität (ein Begriff, der im didaktischen Kontext mit unterschiedlichen Bedeutungen verwendet wird). Wenn beispielsweise eine Zeile des Systems die Form besitzt, so sollte man erkennen, dass daraus unmittelbar ein Teil der Lösung ablesbar ist, und nicht zu dieser Zeile andere Zeilen hinzuaddieren und dadurch viele Variablen reinkriegen. Hier sollte man stattdessen in den anderen Zeilen das durch die ersetzen und dann weiter machen. Oder: Wenn es vier Gleichungen gibt, wobei in zwei Gleichungen nur die Variablen und und in den beiden anderen Gleichungen nur die Variablen und vorkommen, so sollte man erkennen, dass im Prinzip zwei entkoppelte lineare Systeme mit je zwei Variablen vorliegen und diese getrennt lösen. Oder: Es kann sein, dass ein kleines Teilsystem des Gleichungssystems bereits sicherstellt, dass es gar keine Lösung gibt. Dann muss man nur dies herausarbeiten und die anderen Gleichungen gar nicht berücksichtigen. Und: die genaue Fragestellung beachten! Wenn gefragt ist, ob ein bestimmtes Tupel eine Lösung ist, so muss man das Tupel nur in die Gleichungen einsetzen, Manipulationen an den Gleichungen sind nicht nötig.
Unter einem linearen Ungleichungssystem über den rationalen Zahlen oder den reellen Zahlen versteht man ein System der Form
wobei gleich oder ist. Die Lösungsmenge ist deutlich schwieriger zu beschreiben als im Gleichungsfall. Eine Eliminierung von Variablen ist im Allgemeinen nicht möglich.