Maße und Maßräume/Prämaß/Einführung/Textabschnitt
Definition
Es sei eine Menge und ein Mengen-Präring auf . Dann heißt eine Abbildung
ein Prämaß auf , wenn folgende Bedingung erfüllt ist.
Für jede abzählbare Familie von paarweise disjunkten Teilmengen , , aus , für die ebenfalls zu gehört, gilt
Wenn man die leere Indexmenge betrachtet, so folgt aus der Definition die Eigenschaft , da die leere Summe als angesetzt wird. Wenn man diese Interpretation zu spitzfindig findet, so muss man diese Eigenschaft explizit fordern.
Ein Maß unterscheidet sich also von einem Prämaß nicht durch die strukturellen Eigenschaften, sondern lediglich durch Eigenschaften des Definitionsbereiches. Letztlich ist man an Maßen interessiert, doch Prämaße sind für deren Konstruktion wichtige Zwischenschritte.
Mit der folgenden Definition ist die Wahrscheinlichkeitstheorie ein Spezialfall der Maßtheorie.
Definition
Ein Wahrscheinlichkeitsraum ist ein Maßraum mit .