Obere Halbebene/Modulsubstitution/Fundamentalbereich/Fakt/Beweis

Beweis

Zu und ist

Dies bedeutet, dass zwischen den Imaginärteilen von und von die Beziehung

besteht. Für folgt daraus ferner, dass die Menge , , ein Maximum besitzt. Es sei entsprechend gewählt. Wir wählen ferner derart, dass der Realteil von

zwischen und liegt, was nach Bemerkung möglich ist. Der Betrag von ist , andernfalls würde sich durch ein Widerspruch zur Wahl von ergeben. Somit gelangt man in den Abschluss von . Sei . Wenn der Realteil von gleich ist, so kann man durch Anwendung von erreichen, dass ist. Die Elemente auf dem rechten Kreisteilbogen kann man durch eine Anwendung von auf den linken Kreisteilbogen schicken. Daher wird jedes Element von durch ein Element aus repräsentiert.

Es ist noch zeigen, dass dieses Element eindeutig ist. Nach Fakt genügt es zu zeigen, dass für und das Element liegt. Es sei also und

Wir nehmen an, dass gehört und müssen zeigen, dass die Identität oder das Negative der Identität ist. Da die Rollen von und vertauscht werden können, können wir annehmen, dass

gilt. Wie oben gezeigt gilt für den Imaginärteil

also ist

Aus folgt . Es sei zunächst . Dann ist , wobei wir direkt annehmen können, und es liegt eine Scherung vor, die wegen des Realteiles trivial sein muss. Es sei also , wobei wir durch Multiplikation mit annehmen können, dass ist. Aus und folgt . Die Determinante ergibt . Dann ist . Der Imaginärteil dieser Zahl ist , also muss ein Punkt der Sphäre und sein. Von und liegt aber genau ein Element auf dem fixierten Kreissegment.