Offene Teilmenge des R^n/Als differenzierbare Mannigfaltigkeit/Beispiel
Jede offene Teilmenge ist eine -Mannigfaltigkeit, wenn man die Identität als Karte nimmt. Die einzige Übergangsabbildung ist dann ebenfalls diese Identität, die ein -Diffeomorphismus ist. Dies ist dann eine Mannigfaltigkeit mit einem Atlas, der aus einer einzigen Karte besteht. Man kann aber genauso gut den Atlas nehmen, der aus sämtlichen offenen Teilmengen und den zugehörigen identischen Karten besteht. Die Übergangsabbildungen sind dann die Identitäten auf .