Q/Dritte Wurzel aus 7/Dritte Einheitswurzel/Komplexe Konjugation/Aufgabe/Lösung


  1. Es ist

    Daher annulliert das Element. Als Minimalpolynom kommt nur ein Teiler (mit rationalen Koeffizienten) dieses Polynoms in Frage. Die andern komplexen Nullstellen dieses Polynoms sind und . Die Faktorzerlegung dieses Polynoms über ist daher

    Die echten Teiler des Polynoms, die den mittleren Linearfaktor als Faktor enthalten, sind

    und

    die beide keine rationalen Koeffizienten besitzen. Also ist das Minimalpolynom.

  2. Der Grad der Körpererweiterung ist , da nach Fakt die Isomorphie

    gilt und somit der Grad vorliegt.

  3. Die konjugiert-komplexe Zahl zu ist und somit ist die konjugiert-komplexe Zahl von gleich . Wir behaupten, dass diese Zahl nicht zu gehört. Nehmen wir an, sie würde doch dazugehören. Dann ist auch

    und somit würde auch gelten. Es ist aber

    da der Durchschnitt ein Zwischenkörper ist, dessen Grad ein Teiler des Gesamtgrades sein muss. Wegen ist aber der Grad ausgeschlossen und der Grad muss sein. Dies ist ein Widerspruch, da reell, aber nicht rational ist.