Reelle Zahlen/Isomorphiesatz/Fakt/Beweis/Aufgabe/Lösung


Wir können davon ausgehen, dass der eine Körper das Cauchy-Folgen-Modell der reellen Zahlen ist, wobei den Ring aller rationalen Cauchy-Folgen und das Ideal der Nullfolgen bezeichnet. Der andere Körper sei mit bezeichnet. Beide Körper enthalten die rationalen Zahlen und ein Ringhomomorphismus bildet auf und auf ab. Ein Ringhomomorphismus respektiert auch die Quadrate. In einem vollständigen archimedisch angeordneten Körper sind die nichtnegativen Elemente nach Aufgabe genau die Quadrate, deshalb muss ein solcher Ringhomomorphismus auch positive Elemente in positive Elemente überführen. Da man in einem archimedisch angeordneten Körper nach Aufgabe die Konvergenz mit Stammbrüchen allein überprüfen kann, erhält eine solche Abbildung auch die Konvergenz. Da in nach Konstruktion und Fakt jedes Element Limes einer rationalen Cauchy-Folge ist, und diese auch in wegen der Vollständigkeit konvergiert, kann es nur eine solche Abbildung geben. Diese Überlegung zeigt zugleich, wie man die Abbildung ansetzen muss. Ein Element werde repräsentiert durch eine rationale Cauchy-Folge . Diese Folge konvergiert in gegen ein und man setzt . Dies ist wohldefiniert. Wenn man nämlich eine andere repräsentierende rationale Cauchy-Folge nimmt, so ist die Differenz zu eine Nullfolge und dann konvergieren nach Fakt  (1) die beiden Folgen in gegen das gleiche Element.

Aufgrund der Verträglichkeit mit der Konvergenz haben wir das kommutative Diagramm

wobei eine Cauchy-Folge auf ihren Limes in abbildet. Nach Fakt ist diese Abbildung ein Ringhomomorphismus. Da die horizontale Abbildung surjektiv ist, ist auch ein Ringhomomorphismus.

Die Injektivität gilt für jeden Ringhomomorphismus zwischen Körpern, siehe Aufgabe. Zum Nachweis der Surjektivität von sei vorgegeben. Nach Fakt

gibt es eine Dezimalbruchfolge, die gegen konvergiert. Da diese Dezimalbruchfolge eine rationale Cauchy-Folge ist, gehört sie zu und definiert ein Element in , das durch auf abgebildet wird. Insgesamt ist also ein bijektiver Ringhomomorphismus.