Restklassenringe (Z)/Quadratreste/Euler Kriterium/Fakt/Beweis

Beweis

Es ist nach Fakt. Daher ist

Die Abbildung

ist (wie jedes Potenzieren) ein Gruppenhomomorphismus. Die Quadrate werden darunter auf abgebildet, da für die Gleichheit

gilt. Da nach Fakt die Einheitengruppe zyklisch ist, muss diese Abbildung surjektiv sein (sonst hätte jedes Element eine kleinere Ordnung). Damit muss diese Abbildung mit der durch das Legendre-Symbol gegebenen übereinstimmen.