Stetige reelle Funktion/Subgraph/Einfach zusammenhängend/Aufgabe/Lösung
Es sei ein stetiger geschlossener Weg. Dabei ist die Projektion von auf die -Achse kompakt und somit kann man davon ausgehen, dass der Weg im Subgraphen der eingeschränkten Funktion
liegt. Diese Funktion ist nach unten beschränkt, sagen wir durch . Durch eine vertikale Verschiebung um können wir annehmen, dass auf nichtnegativ ist. Die Abbildung
zeigt, dass ein Deformationsretrakt von ist. Nach Fakt stimmt die Fundamentalgruppe von mit der des Intervalls überein, sie ist also trivial nach
Fakt.