Teilbarkeitstheorie (Z)/Primzahl erfüllt Primelementeigenschaft/Fakt/Beweis3
Beweis
Wir setzen voraus, dass kein Vielfaches von ist (andernfalls sind wir fertig). Dann müssen wir zeigen, dass ein Vielfaches von ist. Unter der gegebenen Voraussetzung sind und teilerfremd. Nach dem Lemma von Bezout gibt es ganze Zahlen mit
Da ein Vielfaches von ist, gibt es ein mit
Daher ist
Also ist ein Vielfaches von .