Kurs:Stochastik/Tschebyscheffsche Ungleichung

Einleitung

Bearbeiten

Die tschebyscheffsche Ungleichung, auch Tschebyscheff-Ungleichung oder Bienaymé-Tschebyscheff-Ungleichung genannt,[1] ist eine Ungleichung in der Stochastik, einem Teilgebiet der Mathematik. Sie ist nach Irénée-Jules Bienaymé und Pafnuti Lwowitsch Tschebyscheff benannt.

Bedeutung

Bearbeiten

In der tschebyscheffschen Ungleichung wird die Wahrscheinlichkeit, dass eine Zufallsvariable mehr als einen vorgegebenen Schwellenwert von ihrem Erwartungswert abweicht, durch ihre Varianz abgeschätzt.

Schreibweisen

Bearbeiten

In der Literatur findet sich de Name "Tschebyscheff" in unterschiedlichsten Schreibungen - unter anderem Tschebyschew, Chebyshev, Čebyšev oder Tschebyschow.[2].

Aussage - Tschebyscheff-Ungleichung

Bearbeiten

Sei   eine Zufallsvariable mit Erwartungswert   und endlicher Varianz  . Dann gilt für alle reellen Zahlen  :

 .

Bemerkung - Komplementärereignis

Bearbeiten

Durch Übergang zum komplementären Ereignis erhält man

 .


Beweisidee

Bearbeiten

Die Beweisidee zum Nachweis der Tschebyscheff-Ungleichung ist wie folgt:

  • Man startet mit der Definition der Varianz und
  • schätzt diese nach unten ab, indem man den Ergebnisraum   (disjunkt) zerlegt:
 .
  • Die weitere Abschätzung nach unten liefert dann die Ungleichung
 .

Beweis - Tschebyscheff-Ungleichung

Bearbeiten

Zunächst wird   in zwei disjunkte Mengen   und   zerlegt.

 

In abgekürzter Notation sind das die Mengen:

 

Beweisschritt 1 - Zerlegung der Summe - Varianz

Bearbeiten

Mit der obigen Definition der Menge   und   zerlegt man die Varianz in zwei Summanden:

 

Bemerkung - Summation

Bearbeiten

Man kann den Term   auch durch   ersetzen, da   für alle   gilt.

Beweisschritt 2 - Abschätzung nach unten

Bearbeiten

Da man in der zweiten Summe mit   über nicht-negative Terme summiert (bzgl. Wahrscheinlichkeit und dem quadratischen Term  ), ist die Summe über alle   nicht negativ.

 

Beweisschritt 3 - Abschätzung nach unten

Bearbeiten

Durch Weglassen eines nicht-negativen Terms wird die Ausdruck kleiner. Mit   gilt auch   und durch Anwendung auf den obigen Term zur Varianz erhält man:

 

Absolut stetiger Fall

Bearbeiten

Existiert für die Verteilung eine Dichtefunktion  , so erhält man:

 
  • Führen Sie den Beweis analog für eine absolut stetige Zufallsvariable durch mit Dichtefunktion  .
  • Analysieren Sie die Gemeinsamkeiten und Unterschiede!

Güte der Abschätzung

Bearbeiten

Die von der tschebyscheffschen Ungleichung angegebenen Grenzen sind scharf in dem Sinne, dass Zufallsvariablen existieren, für die bei der Abschätzung Gleichheit gilt.

Beispiel - diskrete Zufallsvariable

Bearbeiten

Dies ist beispielsweise der Fall für eine diskrete Zufallsvariable   mit

 

und

 ,

wobei   eine echt positive reelle Zahl ist und  .

Beispiel - Berechnung von Erwartungswert

Bearbeiten

Dann ist   und  , damit folgt die Abschätzung

 ,

die für   mit Gleichheit erfüllt ist, da dann   gilt.

Bemerkung zur Abschätzung - Verteilungsannahmen

Bearbeiten

Im Allgemeinen sind die Abschätzungen aber eher schwach. Beispielsweise sind sie für   trivial. Dennoch ist der Satz oft nützlich, weil er ohne Verteilungsannahmen über die Zufallsvariablen auskommt und somit für alle Verteilungen mit endlicher Varianz (insbesondere auch solche, die sich stark von der Normalverteilung unterscheiden) anwendbar ist. Außerdem sind die Schranken einfach zu berechnen.

Varianten

Bearbeiten

Abweichungen ausgedrückt durch die Standardabweichung

Bearbeiten

Ist die Standardabweichung   von Null verschieden und   eine positive Zahl, so erhält man mit   eine oft zitierte Variante der tschebyscheffschen Ungleichung:

 .

Diese Ungleichung liefert nur für   eine sinnvolle Abschätzung, für   ist sie trivial, denn Wahrscheinlichkeiten sind stets durch 1 beschränkt.

Verallgemeinerung auf höhere Momente

Bearbeiten

Die tschebyscheffsche Ungleichung lässt sich auf höhere Momente verallgemeinern. Man bezeichnet diese verallgemeinerte Ungleichung nicht selten (vereinfachend) ebenfalls als tschebyscheffsche Ungleichung (englisch Chebyshev’s inequality),[3] während sie im Rahmen der Wahrscheinlichkeitstheorie manchmal auch als markoffsche Ungleichung (bzw. als markovsche Ungleichung o. ä., englisch Markov’s inequality) genannt wird.[4][5] Bei einigen Autoren findet man die verallgemeinerte Ungleichung auch unter der Bezeichnung tschebyscheff-markoffsche Ungleichung (bzw. chebyshev-markovsche Ungleichung o. ä.).[6]

Die verallgemeinerte Ungleichung besagt, dass für einen Maßraum   und eine messbare Funktion   und   stets die Ungleichung

 .

gilt.

Dies folgt aus

 

Die oben genannte Version der Ungleichung erhält man als Spezialfall, indem man  ,   und   setzt, denn dann ist

 .

Mehrdimensionale Tschebyscheffsche Ungleichung

Bearbeiten

Die Tschebyscheffsche Ungleichung kann auf mehrdimensionale Zufallsvariable erweitert werden.

Ist X = ( ) eine n-dimensionale Zufallsvariable, die auf den "Mittelpunkt" (μ(x1) / ... / μ(xn) ) zentriert wurde, so gilt für die zentrierte Variable die Mehrdimensionale Tschebyscheffsche Ungleichung:

 

Exponentielle Tschebyscheff-Ungleichung

Bearbeiten

Dass die Verallgemeinerung gleichzeitig für alle positiven Momente gilt, lässt sich beim Beweis der sogenannten exponentiellen Tschebyscheff-Ungleichung[7] ausnutzen. Sei   eine reelle Zufallsvariable, die gemäß   verteilt ist und   eine reelle Zahl. In der Notation von oben setzt man nun  ,   und   und erhält

 

Der Zähler   ist die momenterzeugende Funktion von  . Die Anwendung der exponentiellen Tschebyscheff-Ungleichung auf eine Summe von unabhängigen und identisch verteilten Zufallsvariablen ist der entscheidende Schritt im Beweis der Chernoff-Ungleichung.

Geschichte

Bearbeiten

In den meisten Lehrbüchern trägt die Ungleichung lediglich den Namen von Pafnuti Lwowitsch Tschebyschow. Er veröffentlichte seinen Beweis für diskrete Zufallsvariablen im Jahre 1867 simultan in St. Petersburg und in Paris, dort in Joseph Liouvilles Journal Journal de Mathématiques Pures et Appliquées. Ein allgemeinerer Beweis wurde jedoch schon 1853 von Irénée-Jules Bienaymé in dem Paper Considérations a l’appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés. veröffentlicht. Dieses wurde sogar direkt vor Tschebyscheffs Veröffentlichung in Liouvilles Journal nochmals in ebendiesem abgedruckt. In einer späteren Veröffentlichung erkannte Tschebyscheff die Erstveröffentlichung von Bienaymé an.[8][9]

Anwendungen

Bearbeiten

Beispiele

Bearbeiten
  • Länge von Wikipedia-Artikeln
  • Folgerung bei existierendem Mittelwert und endlicher Standardabweichung
  • Anwendung auf die Binomialverteilung

Beispiel 1

Bearbeiten

Nehmen wir zum Beispiel an, dass die Länge von Wikipedia-Artikeln einen Erwartungswert von 1000 Zeichen mit einer Standardabweichung von 200 Zeichen hat. Aus der tschebyscheffschen Ungleichung kann man dann ableiten, dass mit mindestens 75 % Wahrscheinlichkeit ein Wikipedia-Artikel eine Länge zwischen 600 und 1400 Zeichen hat ( ).

Der Wert für die Wahrscheinlichkeit wird auf folgende Weise berechnet:

 

Beispiel 2

Bearbeiten

Eine andere Folgerung aus dem Satz ist, dass für jede Wahrscheinlichkeitsverteilung mit Mittelwert   und endlicher Standardabweichung   mindestens die Hälfte der Werte im Intervall   liegen ( ).

Beispiel 3

Bearbeiten

Ein Zufallsereignis tritt bei einem Versuch mit Wahrscheinlichkeit   ein. Der Versuch wird  -mal wiederholt; das Ereignis trete dabei  -mal auf.   ist dann binomialverteilt und hat Erwartungswert   und Varianz  ; die relative Häufigkeit   des Eintretens hat somit Erwartungswert   und Varianz  . Für die Abweichung der relativen Häufigkeit vom Erwartungswert liefert die tschebyscheffsche Ungleichung

 ,

wobei für die zweite Abschätzung die unmittelbar aus der Ungleichung vom arithmetischen und geometrischen Mittel folgende Beziehung   verwendet wurde.

Beispiel als Spezialfall stochastischer Konvergenz

Bearbeiten

Bei dieser Formel handelt es sich um den Spezialfall eines schwachen Gesetzes der großen Zahlen, das die stochastische Konvergenz der relativen Häufigkeiten gegen den Erwartungswert zeigt.

Quantitative Verbesserung der Abschätzung

Bearbeiten

Die tschebyscheffsche Ungleichung liefert für dieses Beispiel nur eine grobe Abschätzung, eine quantitative Verbesserung liefert die Chernoff-Ungleichung.

Beweisskizze

Bearbeiten

Die meisten Autoren führen die tschebyscheffsche Ungleichung als Spezialfall der Markow-Ungleichung

 

mit   und der Funktion   ein.[11][12][13]

Wie man die Markow-Ungleichung mit schulgemäßen Mitteln aus einem unmittelbar einsichtigen Flächenvergleich folgern und dann daraus diese Fassung der Ungleichung von Tschebyscheff herleiten kann, findet man zum Beispiel bei Wirths.[14] Für einen direkten Beweis definiert man

 .

Bezeichnet   die Indikatorfunktion auf der Menge  , so gilt für alle   die Ungleichung

 .

Denn ist  , so ist die rechte Seite null und die Ungleichung erfüllt. Ist  , so hat die linke Seite nach Definition der Mengen   mindestens den Wert  , und die Ungleichung ist wiederum erfüllt. Mit der Monotonie des Erwartungswertes und seinen elementaren Rechenregeln folgt über die Definition der Varianz

 .

Teilen durch   liefert die Ungleichung.[15]

Verwandte Resultate

Bearbeiten

Literatur

Bearbeiten
Bearbeiten

   Wikibooks: Beschreibung mit Beispiel – Lern- und Lehrmaterialien

Siehe auch

Bearbeiten

Einzelnachweise und Anmerkungen

Bearbeiten
  1. Norbert Henze: Stochastik für Einsteiger. Eine Einführung in die faszinierende Welt des Zufalls. 10. Auflage. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-658-03076-6, S. 165, doi:10.1007/978-3-658-03077-3.
  2. Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 112, doi:10.1515/9783110215274.
  3. Robert B. Ash: Real Analysis and Probability. 1972, S. 84–85 & S. 227
  4. A. N. Širjaev: Wahrscheinlichkeit. 1988, S. 572
  5. R. G. Laha, V. K. Rohatgi: Probability Theory. 1979, S. 33
  6. Heinz Bauer: Maß- und Integrationstheorie. 1992, S. 128
  7. Matthias Löwe: Große Abweichungen. (PDF; 418 KB) Westfälische Wilhelms-Universität Münster, Institut für Mathematische Stochastik, S. 4;.
  8. Chebyshev, Pafnutii Lvovich. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
  9. V.V. Sazonov: Bienaymé, Irenée-Jules. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
  10. Heinz Bauer: Wahrscheinlichkeitstheorie. 2002, S. 69 ff
  11. Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, S. 110, doi:10.1007/978-3-642-36018-3.
  12. Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 122, doi:10.1515/9783110215274.
  13. Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 288, doi:10.1007/978-3-642-21026-6.
  14. H. Wirths: Der Erwartungswert – Skizzen zur Begriffsentwicklung von Klasse 8 bis 13. In: Mathematik in der Schule 1995/Heft 6, S. 330–343
  15. Ehrhard Behrends: Elementare Stochastik. Ein Lernbuch – von Studierenden mitentwickelt. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-8348-1939-0, S. 229–230, doi:10.1007/978-3-8348-2331-1.


Seiteninformation

Bearbeiten

Diese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.

Wiki2Reveal

Bearbeiten

Dieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Stochastik' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.

Wikipedia2Wikiversity

Bearbeiten

Diese Seite wurde auf Basis der folgenden Wikipedia-Quelle erstellt: