Start
Zufällige Seite
Anmelden
Einstellungen
Spenden
Über Wikiversity
Haftungsausschluss
Suchen
Wegintegral/Vektorfeld/(t^2,-t^3,t^2-t+4)/-2 bis 5/(y^3-x^2z^2,x^2y,5x^3z-y^2z)/Aufgabe
Sprache
Beobachten
Bearbeiten
<
Wegintegral
Es sei
γ
:
[
−
2
,
5
]
⟶
R
3
,
t
⟼
(
t
2
,
−
t
3
,
t
2
−
t
+
4
)
,
{\displaystyle \gamma \colon [-2,5]\longrightarrow \mathbb {R} ^{3},\,t\longmapsto \left(t^{2},\,-t^{3},\,t^{2}-t+4\right),}
gegeben. Berechne das
Wegintegral
längs dieses Weges zum
Vektorfeld
F
(
x
,
y
,
z
)
=
(
y
3
−
x
2
z
2
,
x
2
y
,
5
x
3
z
−
y
2
z
)
.
{\displaystyle {}F(x,y,z)=\left(y^{3}-x^{2}z^{2},\,x^{2}y,\,5x^{3}z-y^{2}z\right)\,.}
Eine Lösung erstellen